Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Presidents Message</td>
</tr>
<tr>
<td>6</td>
<td>1.0 Executive Summary</td>
</tr>
<tr>
<td>11</td>
<td>2.0 INTRODUCTION</td>
</tr>
<tr>
<td>12</td>
<td>2.1 Background</td>
</tr>
<tr>
<td>12</td>
<td>2.2 Types Of Price Formation Mechanisms</td>
</tr>
<tr>
<td>13</td>
<td>2.3 Analysing The Results</td>
</tr>
<tr>
<td>13</td>
<td>2.4 Report Layout</td>
</tr>
<tr>
<td>15</td>
<td>3 WORLD RESULTS</td>
</tr>
<tr>
<td>16</td>
<td>3.1 Introduction</td>
</tr>
<tr>
<td>16</td>
<td>3.2 DOMESTIC PRODUCTION</td>
</tr>
<tr>
<td>16</td>
<td>3.2.1 2021 Survey Results – Domestic Production</td>
</tr>
<tr>
<td>17</td>
<td>3.2.2 2005 To 2021 Comparisons – Domestic Production</td>
</tr>
<tr>
<td>18</td>
<td>3.3 PIPELINE IMPORTS</td>
</tr>
<tr>
<td>18</td>
<td>3.3.1 2021 Survey Results – Pipeline Imports</td>
</tr>
<tr>
<td>19</td>
<td>3.3.2 2005 To 2021 Comparisons – Pipeline Imports</td>
</tr>
<tr>
<td>20</td>
<td>3.4 LNG IMPORTS</td>
</tr>
<tr>
<td>20</td>
<td>3.4.1 2021 Survey Results – LNG Imports</td>
</tr>
<tr>
<td>21</td>
<td>3.4.2 2005 To 2021 Comparisons – LNG Imports</td>
</tr>
<tr>
<td>24</td>
<td>3.5 TOTAL IMPORTS</td>
</tr>
<tr>
<td>24</td>
<td>3.5.1 2021 Survey Results – Total Imports</td>
</tr>
<tr>
<td>25</td>
<td>3.5.2 2005 To 2021 Comparisons – Total Imports</td>
</tr>
<tr>
<td>26</td>
<td>3.6 TOTAL CONSUMPTION</td>
</tr>
<tr>
<td>26</td>
<td>3.6.1 2021 Survey Results – Total Consumption</td>
</tr>
<tr>
<td>28</td>
<td>3.6.2 2005 To 2021 Comparisons – Total Consumption</td>
</tr>
<tr>
<td>32</td>
<td>3.7 ANALYSIS OF GAS-ON-GAS COMPETITION</td>
</tr>
<tr>
<td>32</td>
<td>3.7.1 Gas-On-Gas Competition</td>
</tr>
<tr>
<td>33</td>
<td>3.7.2 Change In Gog And Ope By Consumption Category</td>
</tr>
<tr>
<td>34</td>
<td>3.7.3 Where Are The Main Ope Areas?</td>
</tr>
<tr>
<td>36</td>
<td>4.0 WHOLESALE PRICE LEVELS</td>
</tr>
<tr>
<td>37</td>
<td>4.1 INTRODUCTION</td>
</tr>
<tr>
<td>37</td>
<td>4.2 2021 SURVEY RESULTS</td>
</tr>
<tr>
<td>37</td>
<td>4.2.1 Price Levels By Price Formation Mechanism</td>
</tr>
<tr>
<td>40</td>
<td>4.3 COMPARISONS 2005 TO 2021</td>
</tr>
<tr>
<td>40</td>
<td>4.3.1 Changes In Wholesale Prices By Price Formation Mechanisms</td>
</tr>
<tr>
<td>41</td>
<td>4.3.2 Changes In Wholesale Prices By Region</td>
</tr>
<tr>
<td>42</td>
<td>4.4 ANALYSING THE RISE IN 2021 AND 2022 PRICES</td>
</tr>
<tr>
<td>45</td>
<td>5.0 GLOBAL GAS PRICE CONVERGANCE</td>
</tr>
<tr>
<td>46</td>
<td>5.1 Introduction</td>
</tr>
<tr>
<td>46</td>
<td>5.2 Measuring Price Convergence</td>
</tr>
<tr>
<td>46</td>
<td>5.3 Price Convergence Using The Survey Data</td>
</tr>
<tr>
<td>52</td>
<td>5.4 Conclusions</td>
</tr>
<tr>
<td>53</td>
<td>Appendix A: Regional Results</td>
</tr>
<tr>
<td>54</td>
<td>A.1 NORTH AMERICA</td>
</tr>
<tr>
<td>54</td>
<td>A.1.1 North America 2021 Survey Results</td>
</tr>
<tr>
<td>54</td>
<td>A.1.2 North America Comparison 2005 to 2021</td>
</tr>
<tr>
<td>55</td>
<td>A.2 EUROPE</td>
</tr>
<tr>
<td>55</td>
<td>A.2.1 Europe 2021 Survey Results</td>
</tr>
<tr>
<td>55</td>
<td>A.2.2 Europe Comparison 2005 to 2021</td>
</tr>
<tr>
<td>59</td>
<td>A.3 ASIA</td>
</tr>
<tr>
<td>59</td>
<td>A.3.1 Asia 2021 Survey Results</td>
</tr>
<tr>
<td>59</td>
<td>A.3.1 Asia 2021 Survey Results</td>
</tr>
<tr>
<td>60</td>
<td>A.4 ASIA PACIFIC</td>
</tr>
<tr>
<td>60</td>
<td>A.4.1 Asia Pacific 2021 Survey Results</td>
</tr>
<tr>
<td>61</td>
<td>A.4.2 Asia Pacific Comparison 2005 to 2021</td>
</tr>
<tr>
<td>62</td>
<td>A.5 LATIN AMERICA</td>
</tr>
<tr>
<td>62</td>
<td>A.5.1 Latin America 2021 Survey Results</td>
</tr>
<tr>
<td>62</td>
<td>A.5.2 Latin America Comparison 2005 to 2021</td>
</tr>
<tr>
<td>63</td>
<td>A.6 FORMER SOVIET UNION</td>
</tr>
<tr>
<td>63</td>
<td>A.6.1 Former Soviet Union 2021 Survey Results</td>
</tr>
<tr>
<td>64</td>
<td>A.6.2 Former Soviet Union Comparison 2005 to 2021</td>
</tr>
<tr>
<td>65</td>
<td>A.7 AFRICA</td>
</tr>
<tr>
<td>65</td>
<td>A.7.1 Africa 2021 Survey Results</td>
</tr>
<tr>
<td>65</td>
<td>A.7.2 Africa Comparison 2005 to 2021</td>
</tr>
<tr>
<td>66</td>
<td>A.8 MIDDLE EAST</td>
</tr>
<tr>
<td>66</td>
<td>A.8.1 Middle East 2021 Survey Results</td>
</tr>
<tr>
<td>67</td>
<td>A.8.2 Middle East Comparison 2005 to 2021</td>
</tr>
<tr>
<td>68</td>
<td>Appendix B: Survey Methodology</td>
</tr>
<tr>
<td>69</td>
<td>B.1 Data Collection</td>
</tr>
<tr>
<td>71</td>
<td>B.2 Types Of Price Formation Mechanisms</td>
</tr>
<tr>
<td>72</td>
<td>B.3 Analysing The Results</td>
</tr>
</tbody>
</table>
President’s Message

The International Gas Union is the global voice of the gas industry. IGU’s more than 150 members in over 80 countries across every continent represent 90% of the global gas market and every segment of the gas value chain, from exploration and production of natural gas, low and zero carbon gas and technologies, to transit, pipelines and LNG, and through distribution and use of gas.

Our international cross-industry membership provides a foundation for one of the most extensive knowledge networks in the energy sector. Over a thousand professionals participate in IGU’s working Committees and Task Forces. They produce insightful industry reports and design the Technical Program of one of the biggest global energy events, the World Gas Conference with the next edition in Beijing, China, in 2025.

I am proud to introduce this is the 14th annual edition of the flagship IGU Wholesale Gas Price Survey report, with my special appreciation for the contribution of the IGU Strategy Committee in bringing it to life.

The report series is unique source of information on global trends in gas price formation mechanisms and wholesale gas prices around the world.

The fourteen surveys taken together tell a very compelling story of significant evolution in wholesale price formation mechanisms, during a period of key developments and dynamic changes in the global gas markets.

This 2022 edition comes in a year when the gas markets have been experiencing unprecedented challenges and turbulence and gas consumers are struggling with abnormally high price levels. The findings of the report and its analysis confirm that there is now a functioning global gas market, and that despite the challenges faced by everyone in managing the high-price environment, a functioning market is the key to ensuring energy security. An efficient global market has allowed the necessary flexibility to reorganize gas supply flows to where they were required most in a matter of just a few months. Unfortunately, the market remains significantly supply-constrained, resulting in the high prices. Ongoing efforts to add new sources of gas supply, together with prudent measures to enhance efficiency and conservation on energy demand side are needed to help rebalance energy markets and make energy access secure and affordable to all.

I hope that you will find the report informative and helpful.

Li Yalan,
IGU President
Section 1
Executive Summary
This is the fourteenth IGU Wholesale Gas Price Survey, which began in 2005. In the 2021 survey responses were received for 96 out of 113 markets, and these responses covered 98% of total world consumption.

While the volume of Gas on Gas (GOG) competition was some 100 bcm higher in 2021, than in 20201, its share was marginally down at 49% of world gas consumption. The biggest contributors to this change were Turkey, Spain, and China. There was a sharp rise in Oil Price Escalation linked (OPE) pipe imports into Turkey and Spain, driven by increase in Turkey’s gas demand, and a reduction of spot LNG imports into Spain, as well as higher volumes of OPE pipeline gas into China.

The OPE share was up by 0.5 percentage points to just over 19%, with the volume up by 64 bcm. There was also a switch in the regulated categories, away from Regulated Cost of Service (RCS) to Regulated Social and Political (RSP), reflecting increasing demand growth in Indonesia and the Middle East – where RSP dominates – relative to slower growth in countries where RCS had a significant share.

In the LNG market, however, the GOG growth trend persisted in 2021, with its share of total LNG imports reaching 46% in 2021, up from 44% in 2020. More contracted LNG volumes tied to hub prices, especially Henry Hub, has been behind the trend. The volume of spot LNG cargoes was only marginally higher, but the share of spot LNG cargoes in total LNG imports declined.

The growing share of total GOG in LNG imports was a continuation of the trend that took off in 2017. The total GOG share of LNG imports in 2016 was 25% and in 2021 that had risen to 46%. The rise between 2016 and 2018 was all due to rising spot LNG imports, while in 2019 the increase was partly spot LNG imports and the rush of LNG to Europe’s traded markets. In 2020, the increase was due to rising spot LNG cargoes, with 2021 being due to more US LNG tied to Henry Hub. For the first time since 2016, the share of spot LNG on the market was down – to 34% in 2021 from 35% in 2020. However, the sharp rise in LNG cargoes into traded markets and those linked to hub prices, meant that the overall GOG share of LNG imports was up to 46% in 2021 from 44% in 2020.

1 The growth in total GOG priced volumes reflected the demand recovery and growth in all gas consumption in a post-COVID19 economic recovery world.
Section 1

Executive Summary

Spot LNG cargoes are heavily concentrated in the Asian markets. China was the largest spot LNG market in 2021, followed by Japan, with South Korea in third place, Brazil fourth and India fifth. Brazil imports rose sharply, as hydro power generation capacity was substantially down due to a severe drought. LNG imports served as a key energy reliability resource to supplement electricity generation, during a shortage in one of its key supply sources. Chinese Taipei, Spain, the UK, Pakistan and the Netherlands also imported significant spot LNG cargoes, and these ten markets made up 85% of all spot LNG cargoes in 2021. OPE-priced LNG is mostly prevalent in Asia Pacific – Japan, South Korea and Chinese Taipei, followed by Asia – China, India and Pakistan – and Europe – mainly Spain, Turkey, France, Portugal and Italy.

Between 2005 to 2021, the GOG share of global gas consumption rose from 31.3% to 49%, with the OPE share falling from 24.3% to 19.1%. Up until 2016, there was a switch away from regulated pricing mechanisms towards the more “market-based” pricing mechanisms such as GOG and OPE. Since then that move has paused, with the key change in pricing mechanisms being in the non-regulated LNG market. Within the regulated categories, the big changes occurred between 2005 and 2012, with a move away from subsidised pricing or regulated below cost (RBC) to higher, but still regulated, prices. The changes in shares, at the World level, are a combination of actual changes in price formation mechanisms in each country and a change in the consumption mix between countries. Since 2005 consumption growth has been strong in Asia, especially China, where OPE has gained ground and has declined in Europe where GOG has grown significantly. This has had a noticeable impact on the global trends.

Most of the rise in GOG, and decline in OPE, between 2005 and 2017 was driven by changes in pipeline imports in Europe, with OPE almost disappearing in Northwest Europe and Central Europe. The remaining enclaves of OPE in Europe are in Turkey, Southeast Europe (including Greece) and the Baltic countries, which are heavily reliant on Russian pipeline gas, plus Spain and Portugal, reliant on Algerian pipeline gas, and LNG. As noted, the rise in GOG LNG imports since 2016 has largely taken over the trend towards GOG displacing OPE in the global gas market.

2 The definition of Spot LNG in this survey is not the same as the GIIGNL definition of spot and short-term contracts. In this survey, spot LNG excludes the short-term contracts element i.e. contracts over one year but less than four years, of the GIIGNL reports. LNG being imported into the trading markets of North America and Northwest Europe, is now split between Spot and Traded volumes, to avoid the categorisation of some spot volumes as traded volumes. In addition, in some countries we have also attempted to categorise US cargoes, which are spot and those under contracts with Henry Hub linked pricing, which would be included in the “Traded” category.

3 Hydropower supplies more than half of Brazil’s electricity.

4 Belgium, Denmark, France, Germany, Ireland, Luxembourg, Netherlands, UK

5 Austria, Czech Republic, Hungary, Poland, Slovakia, Switzerland
Figure 2 World Price Formation 2006 to 2021 - Total Consumption

2021 was also the year when wholesale prices rose sharply in some regions, from the record lows of 2020 to new record highs. The average world wholesale price levels went from their record low of $3.22 per MMBTU in 2020, to $5.54 in 2021, which was just below the highest level of $5.58 recorded in 2013.

Figure 3 Wholesale Price Levels 2005 to 2021 by Region
Globally, wholesale prices had generally risen between 2005 and 2014, apart from North America where shale gas revolution brought the prices lower by unlocking ample new supply. Regions which have a lot of regulated pricing – Africa, the Middle East and FSU – generally experienced rising prices through 2015 before a levelling off, as there was a move away from more subsidised wholesale prices in many countries. This was also the case in the FSU, especially Russia, through 2013, but the decline in US dollar prices since then has largely reflected continued currency weakness, with rouble prices being maintained.

Since 2015, prices in Asia, Asia Pacific and Europe had broadly tracked each other, but this link was broken in 2019 as spot prices collapsed, in a well-supplied market, which impacted the European market much more than Asia and Asia Pacific where prices barely changed from 2018 levels. These differences widened further in 2020 as spot prices collapsed again, in the pandemic. However, in 2021, with the rapid post-pandemic demand recovery and growth driving a surge in hub prices, European prices leapt above Asia and Asia Pacific prices, where OPE prices only rose slightly. Europe average prices were over $13 per MMBtu, while Asia and Asia Pacific prices were just over $8 per MMBtu in 2021.

2021 saw a “perfect storm” hit the global gas market, with a cold winter, recovery from Covid, especially in Asia, pandemic-related LNG supply chain issues and latterly, in Q4 of 2021, reductions in Russian pipeline gas flows. Spot prices increased through the year, and this continued into 2022, exacerbated by the Russia-Ukraine conflict. As Russian pipe flows into Europe continue to decline, prices have continued to rise to record levels. It should be noted, however, that the rise in the GOG share in the LNG market, to just under 50% of global LNG imports, is a fundamental reason why the global gas market has been able to respond very effectively to the significant change in LNG flows, most recently being diverted to Europe to replace declining pipe imports from Russia. GOG pricing, whether as spot LNG or into traded markets, is the very definition of flexibility, which is what is required in the current turbulent market.

The variation in gas price levels of the markets widened significantly in this survey. There had been a trend of greater global gas price convergence from 2005 through to 2015, but this trend stalled somewhat as we entered a period of lower prices, and then diverged sharply in 2021.

Overall, while there have been a number of significant changes over the period of the surveys between the 8 categories, the changes have been almost wholly within larger groupings of categories, until very recently. The categories of OPE, GOG, BIM and NET can be broadly described as “market” pricing, while the categories of RCS, RSP, RBC and NP can be broadly described as “regulated” pricing.

The total of “market” pricing rose from 62% in 2005 to 72% in 2021, mirrored by a decline in “regulated” pricing, from 38% in 2005 to 28% in 2021. Changes in percentages between surveys can arise because of actual changes in price formation mechanism or because of more rapid growth in consumption in markets with a specific type of price formation mechanism.

The switch to “market” pricing is down to a number of factors, notably the move away from regulated pricing in the Russian market to GOG as the independent producers began to compete with each other and Gazprom to sell gas to the power sector and large industrials; a similar move in Argentina, to GOG, as the eligible market opened up, and more recently in Nigeria.

Since 2013, there was initially a move in China to OPE in two provinces away from RCS which in 2014 became nationwide for incremental production over 2012 levels and then in 2015 for all sectors except residential and fertilizers, and halfway through 2018 the move to OPE for residential city-gate pricing. In 2020, Malaysia moved away from RCS to OPE in its domestic pricing. There was little change in 2021.

In addition, there have been pricing reforms in India, beginning in late 2014, moving pricing away from RSP to GOG, and, finally, the rise in new LNG importers, importing at OPE and/or GOG, to enhance or replace domestic production which was regulated.
Section 2

Introduction
2.1 BACKGROUND
The 2021 IGU Wholesale Gas Price survey is the fourteenth to be undertaken in a series which began at the start of the 2006 to 2009 IGU triennium culminating in the World Gas Conference in Buenos Aires. Previous surveys were undertaken for the years 2005, 2007, 2009, 2010, and then annually from 2012. The fourteen surveys have confirmed the significant changes in wholesale price formation mechanisms during a period of key developments and upheaval in the global gas market. In the 2021 survey responses were received for 96 out of 113 markets, and these responses covered 98% of total world consumption. Data on the remaining markets, where responses were not received, was researched by the author of the report under the guidance of the IGU’s Gas Pricing Group and/or based on past responses.

2.2 TYPES OF PRICE FORMATION MECHANISMS
In preparation for the initial 2005 survey, a series of discussions were held at the IGU group meetings, in 2006 and early 2007, on the definition of different types of price formation. It was decided to use for categorisation purposes the wholesale pricing mechanisms, summarised below.

TYPES OF PRICE FORMATION MECHANISMS

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Price Escalation (OPE)</td>
<td>The price is linked, usually through a base price and an escalation clause, to competing fuels, typically crude oil, gas oil and/or fuel oil. In some cases, coal prices can be used as can electricity prices.</td>
</tr>
<tr>
<td>Gas-on-Gas Competition (GOG)</td>
<td>The price is determined by the interplay of supply and demand – gas-on-gas competition – and is traded over a variety of different periods (daily, monthly, annually or other periods). Trading takes place at physical hubs (e.g. Henry Hub) or notional hubs (e.g. NBP in the UK). There are likely to be developed futures markets (NYMEX or ICE). Not all gas is bought and sold on a short-term fixed price basis and there will be longer term contracts but these will use gas price indices to determine the monthly price, for example, rather than competing fuel indices. Also included in this category are spot LNG cargoes, any pricing which is linked to hub or spot prices and also bilateral agreements in markets where there are multiple buyers and sellers.</td>
</tr>
<tr>
<td>Bilateral Monopoly (BIM)</td>
<td>The price is determined by bilateral discussions and agreements between a large seller and a large buyer, with the price being fixed for a period of time – typically one year. There may be a written contract in place but often the arrangement is at the Government or state-owned company level. Usually there would be a single dominant buyer or seller on at least one side of the transaction, to distinguish this category from GOG, where there would be multiple buyers and sellers trading bilaterally.</td>
</tr>
</tbody>
</table>

4 The Wholesale Gas Pricing Group began life as Sub Group 2 of PGCB and was chaired in the period leading up to the 2009 World Gas Conference by Runar Tjersland of Statoil and between 2009 and 2018 by Mike Fulwood, formerly of Nexant, but now a Senior Research Fellow at the Oxford Institute for Energy Studies and a Fellow at the Center on Global Energy Policy at Columbia University. It is now part of the IGU’s Strategy Committee and has been re-titled as the Gas Pricing Group. The 2018, 2019, 2020 and 2021 surveys were organised by Mike Fulwood, under the guidance of the IGU and its Strategy Committee.
Section 2

Introduction

Netback from Final Product (NET)
The price received by the gas supplier is a function of the price received by the buyer for the final product the buyer produces. This may occur where the gas is used as a feedstock in chemical plants, such as ammonia or methanol, and is the major variable cost in producing the product.

Regulation: Cost of Service (RCS)
The price is determined, or approved, formally by a regulatory authority, or possibly a Ministry, but the level is set to cover the “cost of service”, including the recovery of investment and a reasonable rate of return.

Regulation: Social and Political (RSP)
The price is set, on an irregular basis, probably by a Ministry, on a political/social basis, in response to the need to cover increasing costs, or possibly as a revenue raising exercise – a hybrid between RCS and RBC.

Regulation: Social and Political (RSP)
The price is set, on an irregular basis, probably by a Ministry, on a political/social basis, in response to the need to cover increasing costs, or possibly as a revenue raising exercise – a hybrid between RCS and RBC.

Regulation: Social and Political (RSP)
The price is knowingly set below the average cost of producing and transporting the gas often as a form of state subsidy to the population.

Regulation: Social and Political (RSP)
The gas produced is either provided free to the population and industry, possibly as a feedstock for chemical and fertilizer plants, or in refinery processes and enhanced oil recovery. The gas produced maybe associated with oil and/or liquids and treated as a by-product.

Not Known (NK)
No data or evidence.

2.3 ANALYSING THE RESULTS

In the discussion of regions, the IGU regional definitions are used and there is a map in the Appendix which shows the regions. A key point to note is that the Asia region is China and the Indian sub-continent and Asia Pacific is the rest of what is often called Asia.

2.4 REPORT LAYOUT

Section 3 of the report covers the results at the World level of the 2021 survey, and a comparison of the results across all thirteen surveys, for the different categories – domestic production, pipeline imports, LNG imports, total imports and total consumption. The GOG and OPE categories are also analysed in more detail.

Section 4 of the report covers wholesale price levels including a discussion and analysis of the results of the 2021 survey, by
region, price formation mechanism and country, and then comparisons over all surveys.

Section 5 of the report contains an analysis of global gas price convergence over the fourteen surveys. Appendix A of the report looks at the individual regions (IGU definitions) results for the 2021 survey and comparisons across all surveys for the price formation mechanisms.

Appendix B describes the survey methodology, including the data collection method, the IGU regional definitions, the definitions of the price formation mechanisms and the analytical framework.

The results for previous surveys may, in some cases, appear slightly different from what has been published in previous reports. This reflects mostly revisions to IEA data on consumption, production, imports and exports but can also reflect retrospective changes to price formation classification when survey respondents have a better appreciation of the classification definitions as they reflect upon the results from the surveys overall.
Section 3
World Results
3.1 INTRODUCTION
This section covers the full results and analysis at the World level for wholesale price formation mechanisms and comprises results for the 2021 survey and comparisons and analysis of the results of the surveys from 2005 to 2021 for the consumption allocated to the following categories:

- Domestic Production;
- Pipeline Imports;
- LNG Imports;
- Total Imports;
- Total Consumption.

There is also a sub-section which analyses in more detail the GOG and OPE categories for all the surveys.

3.2 DOMESTIC PRODUCTION

3.2.1 2021 Survey Results – Domestic Production
Domestic production in 2021 accounted for some 71% of total world consumption – around 2,963 bcm.

The percentage shares of the mechanisms for each region are shown in Figure 5 below.

GOG has the largest share in domestic production at 46%, totalling some 1,372 bcm, with North America accounting for 935 bcm – around 68% of the total. The next largest share is in the Former Soviet Union, where the sales of gas in Russia to the large eligible customers by either Gazprom or the independent producers is classified as GOG (see the section on Former Soviet Union in the regional analysis for further discussion), accounting for some 226 bcm. The balance is in Europe at 74 bcm – principally the UK plus the Netherlands and Romania, Asia at 44 bcm – India and China (see Appendix A covering regional analysis on Asia for further discussion), Asia Pacific at 35 bcm – Australia and New Zealand, and Latin America at 23 bcm – mainly Argentina and Colombia.

OPE has a relatively small share in domestic production at 11%, totalling some 325 bcm, with 195 bcm in Asia – China and Pakistan mainly, 88 bcm in Asia Pacific – Thailand, Indonesia, Vietnam, Philippines, Australia and Malaysia, 24 bcm in Latin America – Brazil and Colombia, the Middle East at 15 bcm in Kuwait and Israel, and small amounts in Africa, mainly Tunisia, and Europe.

Figure 4 World Price Formation 2021 – Domestic Production
The regulated categories – RCS, RSP and RBC – in total account for 40% of domestic production, with RCS principally in the Former Soviet Union, Asia and Asia Pacific, RSP principally in the Middle East, Former Soviet Union, Latin America and Asia Pacific and RBC in the Former Soviet Union, Africa, Latin America and the Middle East. A more detailed breakdown of the regulated categories is contained in the regional analysis sections.

Figure 5 Regional Price Formation 2021 – Domestic Production

![Bar chart showing regional price formation for 2021 domestic production](chart.png)

3.2.2 2005 to 2021 Comparisons – Domestic Production

The main changes in price formation over the fourteen surveys have been the general rise in domestic GOG from 35% in 2005 to 46% in 2021. The share declined slightly between 2020 and 2021, but rose in volume terms with global gas demand rising more rapidly in more regulated markets. The OPE category is not particularly large in terms of domestic production and was unchanged between 2020 and 2021.

Figure 6 World Price Formation 2005 to 2021 – Domestic Production

![Bar chart showing world price formation for 2005 to 2021 domestic production](chart.png)
Over the period as a whole, GOG in domestic production has gained share from the three regulated categories which in 2005 totalled some 52% compared to 40% in 2021. Half of this occurred in 2009 and 2010 when the GOG category increased in Russia at the expense of the regulated categories, as the market began to open up to independents more, and there was more effective competition between the independents and Gazprom for power sector and industrial customers. This was followed by the changes in India in 2015, as regulated pricing was replaced with a formula linked to international, predominantly hub, prices for key sectors. There has also been an increase in GOG in Latin America as well, principally in 2007 and 2009.

Within the regulated categories, there have been two main changes, in 2009 when Russia changed from RBC to RCS as prices were finally increased above the cost of production and transportation, and in 2012 when Iran increased prices sharply to move from RBC to RSP. RSP increased again in 2014 as prices to the population in Russia was switched away from RCS. In 2017, there was also a change in Malaysia, away from RSP to RCS. In 2020 there was a switch away from RCS as it declined in Russia, as that was the sector hit by lower demand, and in Malaysia which moved away from RCS to OPE. In 2021 the RSP category gained share with more rapid demand growth in Middle East, Asia Pacific and FSU.

3.3 PIPELINE IMPORTS

3.3.1 2021 Survey Results – Pipeline Imports

Pipeline imports in 2021 accounted for some 17% of total world consumption - around 710 bcm.

Pipeline imports are split between just three categories - OPE, GOG and BIM. The regional breakdown is shown in figure 8 below.

Figure 7 World Price Formation 2021 – Pipeline Imports

GOG is 63% of all pipeline imports, totalling 445 bcm, with Europe at 302 bcm, North America 134 bcm and the Former Soviet Union 7 bcm (Ukraine imports from Europe). Most of the European gas importing countries, outside Turkey and Spain, are now dominated by GOG pipeline imports with the top five countries being Germany, Italy, France, Netherlands and UK. OPE is around 28% of all pipeline imports, totalling some 197 bcm, with Europe at some 98 bcm – Turkey being by far the largest contributor. Asia accounts for some 55 bcm – China, 20 bcm in Asia Pacific – Thailand, Singapore and Malaysia, and 11 bcm in Latin America – mainly Brazil and Argentina. There are also small quantities in other regions, apart from North America,

7 This figure represents the total effective net pipeline imports for all countries. Many countries will produce gas and import by pipeline and LNG and also export by pipeline from the “pool” of all sources of supply. Gross pipeline imports in total in 2021 were 797 bcm so effectively 87 bcm was “re-exported” by pipeline.

8 There is a very small amount of RCS in Africa reflecting the regulated transportation tariff element of pipeline gas from Nigeria to Ghana.
including countries such as Russia, Iran and Tunisia.

BIM has the balance of 9%, totalling some 68 bcm. This is mainly in the Former Soviet Union and the Middle East.

3.3.2 2005 to 2021 Comparisons – Pipeline Imports

The main changes in the fourteen surveys from 2005 to 2021 are the continued rise in GOG from 23% in 2005 to 63% in 2021, which has been at the expense of the OPE category. The decline in OPE was partly offset by a switch from BIM to OPE in intra-FSU trade in 2009, and more recently the imports of pipeline gas from Turkmenistan to China, and in 2016, the change in one of the gas contracts from Russia to Turkey. In 2021, the GOG share declined by 2 percentage points with the volume of OPE imports in Europe rising sharply in Turkey and Spain, reflecting a faster increase in demand than elsewhere in Europe and a rise in China’s pipe imports from Central Asia and Russia.

3.3.2 2005 to 2021 Comparisons – Pipeline Imports

The main changes in the fourteen surveys from 2005 to 2021 are the continued rise in GOG from 23% in 2005 to 63% in 2021, which has been at the expense of the OPE category. The decline in OPE was partly offset by a switch from BIM to OPE in intra-FSU trade in 2009, and more recently the imports of pipeline gas from Turkmenistan to China, and in 2016, the change in one of the gas contracts from Russia to Turkey. In 2021, the GOG share declined by 2 percentage points with the volume of OPE imports in Europe rising sharply in Turkey and Spain, reflecting a faster increase in demand than elsewhere in Europe and a rise in China’s pipe imports from Central Asia and Russia.
The rise in GOG at the expense of OPE has been entirely in the European market (at least until 2015 when the Ukraine began importing gas from Europe, rather than Russia – utilising reverse flow mechanism), as the Northwest Europe countries began switching to GOG and more recently the Central Europe countries and, in 2014 and 2017, Italy. In respect of pipeline imports into Europe, GOG in 2021 has a 76% share compared to 25% for OPE – in 2020 the GOG share was 81% and OPE 19%, with the change in 2021 reflecting the sharply rising demand in Turkey and Spain as noted above. This is in marked contrast to 2005 when it was 91% OPE and only 7% GOG.

3.4 LNG IMPORTS

3.4.1 2021 Survey Results – LNG Imports

LNG imports in 2021 accounted for some 12% of total world consumption - around 505 bcm. LNG imports are split 54% OPE and 46% GOG. The regional breakdown is shown in Figure 11 below.

OPE at some 274 bcm is mostly Asia Pacific – Japan, Korea and Chinese Taipei, followed by Asia – China, India and Pakistan – and Europe – mainly Spain, Turkey, France, Portugal, Italy and Poland.

GOG totals some 230 bcm and can be divided into imports into North America and countries such as the UK, Belgium, France and Netherlands, where the domestic market pricing mechanism is GOG, and all other markets which are mainly importing spot and short-term priced LNG cargoes, which is almost every other LNG importing country - China taking the largest volume - but also includes countries like Japan, India, Korea, Turkey, Spain, Argentina and Brazil. In Europe, 67% of LNG imports are now GOG.

As for pipeline imports, the figure represents total effective net LNG imports for all countries. Gross LNG imports (net of re-exported LNG) were some 512 bcm in 2021, with around 7 bcm being regasified and re-exported as pipeline gas.
3.4.2 2005 to 2021 Comparisons – LNG Imports

The main changes in the fourteen surveys from 2005 to 2021 are a rise in GOG from just over 13% in 2005 to 32% in 2012, which was largely at the expense of the OPE category, before it fell back in 2014 to 25%. In 2015 there was a recovery back to a 33% share, a fall in 2016 to 25%, before rising to 29% in 2017, 34% in 2018, 41% in 2019, 44% in 2020 and 46% in 2021.

The GOG share is comprised of LNG going to the traded markets of North America and in Europe the UK, Belgium and Netherlands and any hub-indexed LNG contracts (such as Henry Hub), and spot LNG cargoes to the more “traditional” LNG markets in Asia Pacific and Europe and some of the newer markets.

There was a significant increase in GOG between 2005 and 2007, which was principally due to a rise in spot LNG imports in Asia and Asia Pacific and a smaller rise in North American imports. Since 2007, there have been offsetting changes with North American LNG imports - which are all GOG - declining, European imports, principally to the UK increasing in 2009 and 2010 and relatively stability in Asia and Asia Pacific spot LNG imports. In 2012, as Europe’s LNG imports declined, these were more than offset in the GOG category by rising spot LNG imports in Asia and Asia Pacific. The decline in 2013 reflected the fall in the share of spot LNG imports and a decline in LNG imports into the UK, the USA and Canada. The further small decline in 2014 was principally due to lower spot LNG cargoes in Asia and Asia Pacific, with correspondingly higher OPE under long term contracts. The rebound in 2015 was largely due to more spot LNG cargoes in all markets but especially Japan and the new markets, as the fall in spot LNG prices preceded the decline in oil-linked contract prices. In 2016, the decline in GOG was a consequence of LNG trade becoming more contracted, with fewer spot LNG cargoes, which benefitted OPE. In 2017 this was reversed as spot LNG cargoes increased, in part due to the rise in Henry Hub priced US LNG exports.

2018 saw a significant change in LNG imports of all the surveys, driven by the continued rise in Henry Hub priced US LNG exports but also by a general rise in spot LNG cargoes. This change was just as large in 2019, rising to over 40% for the first time, with the volume of OPE LNG imports declining for the second year in a row. In 2020, the growth of GOG slowed but still rose to 44%. The rise in GOG was strongest in Asia and Asia Pacific, rising to 46% (up 10 percentage points) and 29% (up 6 percentage points) respectively. These rises offset a five percentage-point decline in Europe, largely due to a switch to more OPE volumes in Spain in 2020. In 2021, the two-point rise in GOG largely reflected a large increase in spot LNG cargoes to Latin America (Brazil mainly), Asia Pacific and China. There was also a switch away from OPE cargoes to GOG in Europe.

The definition of Spot LNG in this survey is not the same as the GIIGNL definition of spot and short-term contracts. In this survey, spot LNG excludes the short-term contracts element i.e. contracts over one year but less than four years, of the GIIGNL reports. The LNG being imported into the trading markets of North America and Northwest Europe, has been split between Spot and Traded volumes, to avoid the categorisation of some spot volumes as traded volumes. In addition, in some Asian countries US cargoes have been categorised partly as spot and partly as “Traded” where the Asian buyers directly contract for the LNG with Henry Hub linked pricing.
The volume of LNG going to the traded markets had been in decline since 2010, with the decline in US LNG imports, reaching a low point in 2018 as UK imports also declined. In contrast, spot LNG cargoes have increased, especially in 2017 and 2018 in Asia Pacific, Asia and parts of Europe plus the newer LNG importing markets. However, in 2019, the volume of LNG going to the traded markets of Northwest Europe increased markedly, as the abundant supply of LNG sought a home in the only market able to absorb the surplus, declining only slightly in 2020. In 2021, the traded share rose again on the back of contracted US LNG cargoes into Asian markets especially. As Figure 13 shows, the volume of spot LNG cargoes have risen two and a half times in four years, from 63 bcm in 2016 to 170 bcm in 2021. To further illustrate the growth of spot LNG, figure 13 shows breaks down the data from figure 12, showing Spot LNG separately and the percentage of Spot LNG in total LNG imports.
For the first time five years the spot LNG percentage declined, to 34% in 2021 from 35% in 2020, with the growth in LNG trade being largely accounted for by contracted LNG – both OPE and hub-indexed.

Unsurprisingly, spot LNG imports are predominant in the Asia and Asia Pacific regions. China is the biggest spot LNG importer, closely followed by Japan. India spot LNG imports are a quarter of the China figure. The UK is the fourth largest GOG importer but this is mostly into a traded market but has spot LNG imports in excess of 5 bcm, as does South Korea, Chinese Taipei, Brazil and Spain.

Figure 14 World LNG Price Formation 2005 to 2021 - Spot LNG Imports

Figure 15 GOG Spot and Traded LNG Imports - 2021
3.5 TOTAL IMPORTS

3.5.1 2021 Survey Results – Total Imports
Total imports in 2021 accounted for some 29% of total world consumption – 1,214 bcm.

Total imports are the sum of pipeline and LNG imports and comprise the three categories of GOG (56%), OPE (39%) and BIM (5%).

Figure 16 World Price Formation 2021 – Total Imports

The table below shows the regional and category breakdown in volume terms.

Table 1 World Price Formation 2021 – Total Imports

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPE</td>
</tr>
<tr>
<td>North America</td>
<td>0</td>
</tr>
<tr>
<td>Europe</td>
<td>128.3</td>
</tr>
<tr>
<td>Asia</td>
<td>143.1</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>163.6</td>
</tr>
<tr>
<td>Latin America</td>
<td>17.2</td>
</tr>
<tr>
<td>FSU</td>
<td>6.0</td>
</tr>
<tr>
<td>Africa</td>
<td>5.1</td>
</tr>
<tr>
<td>Middle East</td>
<td>7.6</td>
</tr>
<tr>
<td>Total</td>
<td>470.9</td>
</tr>
</tbody>
</table>
3.5.2 2005 to 2021 Comparisons – Total Imports

Total imports have only comprised three categories – OPE, GOG and BIM – in all fourteen surveys from 2005 to 2021\(^\text{11}\). As well as the figure the table below shows the volume breakdown. OPE declined from 63% in 2005 to 59% in 2007 as GOG rose from just over 21% to 28% and then in 2009, OPE gained share rising to 66% as BIM fell from 14% to 6%, with GOG rising to 29%. Since 2009 OPE has lost share by around 27 percentage points and GOG gained a similar share, in large part due to pipeline imports in Europe, but more recently the rising share of GOG in LNG imports. In volume terms, over the period 2005 to 2021, OPE pricing declined by 7% while GOG grew by over 300%.

Figure 17 World Price Formation 2005 to 2021 – Total Imports

Table 2 World Price Formation 2005 to 2021 – Total Imports

<table>
<thead>
<tr>
<th>World</th>
<th>Total Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPE</td>
</tr>
<tr>
<td>2005</td>
<td>505.8</td>
</tr>
<tr>
<td>2007</td>
<td>502.8</td>
</tr>
<tr>
<td>2009</td>
<td>539.3</td>
</tr>
<tr>
<td>2010</td>
<td>569.3</td>
</tr>
<tr>
<td>2012</td>
<td>535.5</td>
</tr>
<tr>
<td>2013</td>
<td>517.0</td>
</tr>
<tr>
<td>2014</td>
<td>462.1</td>
</tr>
<tr>
<td>2015</td>
<td>433.0</td>
</tr>
<tr>
<td>2016</td>
<td>477.1</td>
</tr>
<tr>
<td>2017</td>
<td>483.4</td>
</tr>
<tr>
<td>2018</td>
<td>467.7</td>
</tr>
<tr>
<td>2019</td>
<td>444.6</td>
</tr>
<tr>
<td>2020</td>
<td>430.3</td>
</tr>
<tr>
<td>2021</td>
<td>472.6</td>
</tr>
</tbody>
</table>

\(^{11}\) Apart from the very small RCS on the Nigeria to Ghana pipeline since 2010
3.6 TOTAL CONSUMPTION

3.6.1 2021 Survey Results – Total Consumption

Total consumption in 2021 was around 4,180 bcm.

Figure 18 World Price Formation 2021 – Total Consumption

GOG has the largest share at 49%, totalling around 2,050 bcm, dominated by North America at 1,072 bcm, followed by Europe at some 438 bcm, the Former Soviet Union at 233 bcm, and Asia and Asia Pacific at 115 and 107 bcm respectively. In all GOG can now be found in 61 markets, in one form or another, and in all regions.

The OPE share at 19%, totals 797 bcm and is predominantly Asia (338 bcm), Asia Pacific (251 bcm) and Europe (129 bcm). OPE is widespread also being found in 50 markets, including just over half of the countries in Europe (although most at very small percentages), and in all regions except North America.

The regulated categories – RCS, RSP and RBC – account in total for some 28%, around 1,174 bcm:

- RCS totals some 365 bcm and is in 14 countries, mainly the Former Soviet Union (Russia and Azerbaijan) and Asia (China and Bangladesh), followed by Africa (Egypt and Nigeria) and Latin America (Argentina);
- RSP totals some 589 bcm and is in 23 countries, with the Middle East dominating – Iran, Saudi Arabia, UAE and Oman – followed by the Former Soviet Union – Russia and Ukraine – and Latin America – Argentina, Bolivia and Peru with some in Asia Pacific – Indonesia;
- RBC totals some 220 bcm and is in 15 countries, mainly the Former Soviet Union – Kazakhstan, Turkmenistan and Uzbekistan, Africa – Egypt and Algeria – and Latin America – Venezuela.

The BIM share at 3% totals some 138 bcm and is in 24 countries, predominantly Middle East – Qatar, UAE, Israel and Iraq, and the Former Soviet Union – in countries importing from Russia.

The NET share at less than 1% totals some 14 bcm in just 1 country – Trinidad.

The NP share at less than 1% totals some 9 bcm in 7 countries, largely Mexico and Brunei, where it is used in the energy industry in refining processes or enhanced oil recovery.

The table below shows the regional and category breakdown for total world consumption and figure 17 the regional breakdown...
The BIM share at 3% totals some 138 bcm and is in 24 countries, predominantly Middle East – Qatar, UAE, Israel and Iraq, and the Former Soviet Union – in countries importing from Russia.

The NET share at less than 1% totals some 14 bcm in just 1 country – Trinidad.

The NP share at less than 1% totals some 9 bcm in 7 countries, largely Mexico and Brunei, where it is used in the energy industry in refining processes or enhanced oil recovery.

The table below shows the regional and category breakdown for total world consumption and figure 17 the regional breakdown in percentage terms.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPE</td>
</tr>
<tr>
<td>North America</td>
<td>0.0</td>
</tr>
<tr>
<td>Europe</td>
<td>129.6</td>
</tr>
<tr>
<td>Asia</td>
<td>341.9</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>252.2</td>
</tr>
<tr>
<td>Latin America</td>
<td>43.0</td>
</tr>
<tr>
<td>FSU</td>
<td>6.2</td>
</tr>
<tr>
<td>Africa</td>
<td>8.4</td>
</tr>
<tr>
<td>Middle East</td>
<td>23.2</td>
</tr>
<tr>
<td>Total</td>
<td>804.4</td>
</tr>
</tbody>
</table>

Figure 19 Regional Price Formation 2021 – Total Consumption

![Regional Price Formation 2021 - Total Consumption](chart.png)

- **OPE**: Green
- **GOG**: Light Blue
- **BIM**: Orange
- **NET**: Red
- **RCS**: Grey
- **RSP**: Light Grey
- **RBC**: Medium Grey
- **NP**: Dark Grey
3.6.2 2005 to 2021 Comparisons – Total Consumption

The figure below shows the changes in the price formation mechanisms over the fourteen surveys from 2005 to 2021.

Figure 20 World Price Formation 2005 to 2021 – Total Consumption

Table 4 World Price Formation 2005 to 2021 – Total Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>OPE</th>
<th>GOG</th>
<th>BIM</th>
<th>NET</th>
<th>RCS</th>
<th>RSP</th>
<th>RBC</th>
<th>NP</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>696.7</td>
<td>896.9</td>
<td>166.9</td>
<td>16.6</td>
<td>22.9</td>
<td>325.3</td>
<td>718.7</td>
<td>23.1</td>
<td>2867.1</td>
</tr>
<tr>
<td>2007</td>
<td>679.2</td>
<td>1018.0</td>
<td>158.3</td>
<td>18.9</td>
<td>22.4</td>
<td>363.6</td>
<td>775.1</td>
<td>21.8</td>
<td>3057.2</td>
</tr>
<tr>
<td>2009</td>
<td>705.2</td>
<td>1143.7</td>
<td>93.1</td>
<td>18.9</td>
<td>431.6</td>
<td>298.8</td>
<td>345.0</td>
<td>21.5</td>
<td>3057.9</td>
</tr>
<tr>
<td>2010</td>
<td>736.5</td>
<td>1343.1</td>
<td>101.8</td>
<td>22.5</td>
<td>419.1</td>
<td>294.8</td>
<td>388.9</td>
<td>22.9</td>
<td>3329.7</td>
</tr>
<tr>
<td>2012</td>
<td>679.6</td>
<td>1420.9</td>
<td>123.5</td>
<td>23.9</td>
<td>477.0</td>
<td>481.8</td>
<td>229.9</td>
<td>21.5</td>
<td>3458.1</td>
</tr>
<tr>
<td>2013</td>
<td>651.4</td>
<td>1515.6</td>
<td>142.6</td>
<td>20.0</td>
<td>421.0</td>
<td>494.6</td>
<td>227.9</td>
<td>21.8</td>
<td>3494.9</td>
</tr>
<tr>
<td>2014</td>
<td>613.4</td>
<td>1510.6</td>
<td>144.0</td>
<td>19.4</td>
<td>385.8</td>
<td>584.6</td>
<td>212.4</td>
<td>23.3</td>
<td>3493.6</td>
</tr>
<tr>
<td>2015</td>
<td>641.2</td>
<td>1610.0</td>
<td>147.9</td>
<td>18.8</td>
<td>359.8</td>
<td>554.5</td>
<td>190.3</td>
<td>21.5</td>
<td>3544.1</td>
</tr>
<tr>
<td>2016</td>
<td>723.1</td>
<td>1654.5</td>
<td>140.7</td>
<td>17.3</td>
<td>353.0</td>
<td>540.0</td>
<td>188.7</td>
<td>18.5</td>
<td>3635.9</td>
</tr>
<tr>
<td>2017</td>
<td>737.4</td>
<td>1738.5</td>
<td>127.0</td>
<td>13.0</td>
<td>386.6</td>
<td>516.3</td>
<td>206.4</td>
<td>14.9</td>
<td>3740.3</td>
</tr>
<tr>
<td>2018</td>
<td>750.9</td>
<td>1870.4</td>
<td>132.2</td>
<td>13.5</td>
<td>408.3</td>
<td>552.9</td>
<td>213.8</td>
<td>14.5</td>
<td>3928.6</td>
</tr>
<tr>
<td>2019</td>
<td>750.9</td>
<td>1944.4</td>
<td>135.6</td>
<td>13.8</td>
<td>416.3</td>
<td>529.9</td>
<td>220.8</td>
<td>9.1</td>
<td>4020.9</td>
</tr>
<tr>
<td>2020</td>
<td>740.5</td>
<td>1958.0</td>
<td>131.6</td>
<td>11.8</td>
<td>363.5</td>
<td>539.5</td>
<td>217.9</td>
<td>8.5</td>
<td>3971.1</td>
</tr>
<tr>
<td>2021</td>
<td>804.4</td>
<td>2055.1</td>
<td>139.1</td>
<td>12.1</td>
<td>371.0</td>
<td>569.2</td>
<td>233.8</td>
<td>8.5</td>
<td>4193.5</td>
</tr>
</tbody>
</table>
Table 4 World Price Formation 2005 to 2021 – Total Consumption

<table>
<thead>
<tr>
<th>World</th>
<th>Total Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPE</td>
</tr>
<tr>
<td>2005</td>
<td>24.3%</td>
</tr>
<tr>
<td>2007</td>
<td>22.2%</td>
</tr>
<tr>
<td>2009</td>
<td>23.1%</td>
</tr>
<tr>
<td>2010</td>
<td>22.1%</td>
</tr>
<tr>
<td>2012</td>
<td>19.7%</td>
</tr>
<tr>
<td>2013</td>
<td>18.6%</td>
</tr>
<tr>
<td>2014</td>
<td>17.6%</td>
</tr>
<tr>
<td>2015</td>
<td>18.1%</td>
</tr>
<tr>
<td>2016</td>
<td>19.9%</td>
</tr>
<tr>
<td>2017</td>
<td>19.7%</td>
</tr>
<tr>
<td>2018</td>
<td>19.1%</td>
</tr>
<tr>
<td>2019</td>
<td>18.7%</td>
</tr>
<tr>
<td>2020</td>
<td>18.6%</td>
</tr>
<tr>
<td>2021</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

The changes between each survey can be summarised as follows:

- Between 2005 and 2007, GOG increased its share by some 2 percentage points and OPE decreased by 2 percentage points reflecting faster growth in consumption in North America than most other regions, a switch from OPE to GOG in Europe, and to a lesser extent in Asia Pacific and Asia, and a very small move from regulated pricing to GOG in Russia and Latin America. RSP also increased its share by half a percentage point reflecting more rapid growth in consumption in the RSP countries;

- Between 2007 and 2009, GOG increased its share by a further 4 percentage points, at a time when total world consumption showed little change, mainly because of the change in Russia from RBC to GOG but also because of the continuing switch from OPE to GOG in Europe. OPE actually gained 1 percentage point with the loss in share in Europe being more than offset by a switch from BIM, which lost 2 percentage points overall, to OPE in intra-FSU trade. The other major change was the decline of 14 percentage points in RBC and a similar gain in RCS, mainly in Russia, but RCS also gained at the expenses of RSP, which lost almost 2 percentage points, as China’s domestic production changed categories as prices increased as a consequence of regulatory change;

- Between 2009 and 2010, GOG increased its share by another 3 percentage points, with the continuing switch from OPE to GOG in Europe and further move in Russia away from RCS to GOG. OPE declined by just under one percentage point with losses in share in Europe being partly offset by gains in shares in Asia, as China began importing pipeline gas and more LNG under contract, and Asia Pacific on the back of rapid growth in demand in Korea, Taiwan and Thailand;

- Between 2010 and 2012, GOG increased its share by almost one percentage point, rising to 41%, with the continuing increase in share in Europe away from OPE, and more spot LNG imports in Asia and Asia Pacific, being partly offset by a decline in share in Russia. OPE declined by 2.5 percentage points, based on the switch to GOG in Europe (and to BIM in Turkey, as a contract changed) coupled with declining European demand, only partly offset by a rising share in pipeline imports in China. RCS increased its share by 1 percentage point, principally in Russia but also as demand grew sharply in China. RSP increased its share by 5 percentage points, principally due to the change in pricing in Iran and rising demand in Saudi Arabia. RBC declined by a similar amount, reflecting the Iran pricing change.
Between 2012 and 2013, GOG increased its share by over 2 percentage points, gaining from OPE as pricing mechanisms continued to switch in Europe, and from RCS in Russia as the independent producers recovered market share. OPE declined by another one percentage point reflecting the changes in Europe, partly offset by a small gain in the LNG import segment with spot LNG trade declining, and in China with the new pricing regime in two provinces. RCS declined by 1.5 percentage points, largely reflecting the change in Russia towards GOG and in China to OPE. The BIM category regained almost half a percentage point in share reflecting domestic production growth in Qatar.

Between 2013 and 2014, the GOG share declined marginally as the continued switch away from OPE in Europe and more rapid consumption growth in North America and Europe was offset by a decline in the share of GOG in Russia towards regulated pricing, and fewer spot LNG cargoes. OPE was down just under 1 percentage point reflecting the changes in Europe, partly offset by an increase in China. RCS was down by 1 percentage point largely as a result of the switch to RSP in Russia and the RSP category was up by 2.5 percentage points, reflecting the Russia switch but also a change in Nigeria as well, away from RBC, coupled with more rapid consumption growth in RSP countries. RBC was unchanged, with the decline in Nigeria, being offset by rising consumption on Kazakhstan, Turkmenistan and Uzbekistan.

Between 2014 and 2015, the GOG share increased by over 2 percentage points reflecting rising gas consumption in North America and Europe, together with the continuing move away from OPE in Europe, the change in pricing in India and more spot LNG, partly offset by a decline in Australia as OPE netback contracts began to be introduced, and the switch in Ukraine to imports of hub-priced gas from Europe. OPE’s share increased by just over half a percentage point, with the decline in Europe and lower share of LNG imports being more than offset by the change in the domestic pricing mechanism in China. The RSC share declined by one percentage point reflecting the changes in China, partly offset by moves to RCS in Egypt and Nigeria. RSP was down by one percentage point, principally reflecting the changes in pricing in India and Nigeria. RBC was lower by almost 1 percentage point, reflecting moves away in Bangladesh and partially in Egypt.

Between 2015 and 2016, the GOG share rose by marginally, with an increase in the share in Europe and the Former Soviet Union, together with growing consumption in North America, being partly offset by declines in Asia and Asia Pacific, reflecting fewer pure spot LNG cargoes. The OPE share increased by just under 2 percentage points, reflecting a small rise in Europe at the expense of BIM (in Turkey), but principally in Asia and Asia Pacific, as the share in LNG imports increased, but also reflecting a rise in domestic production in China, as the full year effect of the change in city-gate pricing came through, and changed domestic production pricing in Kuwait. The RCS share declined by half a percentage point, principally reflecting the changes in China, partly offset by a rise in Iran in gas as a feedstock to petrochemicals, and faster consumption growth in some countries with RCS pricing. The RSP share was down by just under one percentage point as a result of declines in the Middle East – Iran and Kuwait – and the FSU, principally in Russia with switching to GOG and RCS. The RBC share was down very slightly on slower consumption growth.

Between 2016 and 2017, the GOG share increased by 1 percentage point as a result of a continuing rise in Europe, at the expense of OPE, the rise in Asia as China introduced market pricing for direct sales from upstream producers to large users, the general recovery in spot LNG cargoes. The OPE share was almost unchanged, with the losses to GOG being partly offset by an increase in Asia Pacific, mainly in Malaysia and Indonesia. The BIM share was down almost half a percentage point reflecting the switch in Indonesia to OPE. The RCS share increased by over half a percentage point, largely as a result of the change in Malaysia away from RSP, which was down almost one percentage point. RBC was broadly unchanged.

Between 2017 and 2018, the GOG share rose by one percentage point largely reflecting the increasing share of spot LNG cargoes in LNG imports and rapidly growing US consumption, more than offsetting the declining share in pipeline imports, as a result of reduced European pipeline imports and increased China pipeline imports. OPE share declined by half a percentage point, with the loss in LNG imports being partly offset by gains in pipeline imports and domestic production in China. RCS was largely unchanged but RSP declined by a quarter of a percentage point, reflecting slower consumption growth in countries with RSP and a switch away in Argentina to RCS. In turn RCS lost share in China to OPE.

Between 2018 and 2019, the GOG share rose by one percentage point, at the expense of OPE, largely as a result of rising GOG in LNG imports – both traded markets and spot LNG cargoes – and a more rapid decline in OPE pipeline imports in Europe. RCS was down by half a percentage point, while RSP declined by a quarter of a percentage point, a decline in Russia and Ukraine. RBC rose marginally as Turkmenistan eliminated free gas but still maintained subsidies.
Between 2019 and 2020, the GOG share rose by another one percentage point, largely driven by rising spot LNG imports, at the expense of OPE, together with rising shares in domestic production in Russia and Israel. OPE gained slightly in domestic production in China and Malaysia. RCS declined by one percentage point reflecting the changes in Malaysia. RSP gained slightly in Indonesia.

Between 2020 and 2021, the GOG share was down marginally with a rising share in LNG (traded markets and hub-indexed contracts) and a decline in pipeline imports, largely reflecting rapid demand growth in Turkey and a switch more pipe imports into Spain, with lower LNG imports, plus more pipeline gas into China from Central Asia and Russia. As a consequence, the OPE share rose slightly. The RSP share also rose reflecting increasing demand growth in Indonesia and the Middle East.

Overall, over the 2005 to 2021 period, OPE has declined by 5 percentage points, GOG has risen by 18 percentage points, BIM has declined by 2.5 percentage points, RCS has risen by 8 percentage points, RSP risen by 3 percentage points and RBC declined by 20 percentage points. In terms of absolute volumes, OPE increased by some 100 bcm, and GOG by 1,150 bcm - a 130% increase. BIM and NET were also down slightly. The regulated categories in total saw their volume increase by just over 100 bcm.

While there have been a number of significant changes over the period of the surveys between the 8 categories, as described above, the changes have been almost wholly within larger groupings of categories, until very recently. The categories of OPE, GOG, BIM and NET can be broadly described as “market” pricing, while the categories of RCS, RSP, RBC and NP can be broadly described as “regulated” pricing. The figure below compares the changes in the “market” and “regulated” categories over the fourteen surveys.

Figure 21 Market and Regulated Pricing 2005 to 2021

The total of “market” pricing rose from 62% in 2005 to 72% in 2021, mirrored by a decline in “regulated” pricing, from 38% in 2005 to 28% in 2021. Changes in percentages between surveys can arise because of actual changes in price formation mechanism or because of more rapid growth in consumption in countries with a specific type of price formation mechanism. The switch to “market” pricing is down to the following:

- The move away from regulated pricing in the Russian market to GOG as the independent producers began to compete with each other and Gazprom to sell gas to the power sector and large industrials - this was partly reversed in 2014 with more “regulated” pricing;
A similar move in Argentina, to GOG, as the eligible market opened up, and more recently in Nigeria;

The changes, since 2013, in China where there was initially a move to OPE in 2 provinces away from RCS which in 2014 became nationwide for incremental production over 2012 levels and then in 2015 for all sectors except residential and fertilizers – some of this OPE in 2017 switched to GOG – and halfway through 2018 the move to OPE for residential city-gate pricing. In 2020, Malaysia moved away from RCS to OPE in its domestic pricing;

The pricing reforms in India, which began in late 2014, moving pricing away from RSP to GOG; and

The rise in new LNG importers, importing at OPE and/or GOG, to enhance or replace domestic production which was regulated.

3.7 ANALYSIS OF GAS-ON-GAS COMPETITION AND OIL PRICE ESCALATION

3.7.1 Gas-on-Gas Competition

The rise in GOG from 31% of total world consumption in 2005 to 49% in 2021 and in which regions, has been discussed in some detail above. It has been noted earlier that GOG is not one homogeneous category and can be considered to comprise the following types of pricing mechanisms:

- **TRADING** – what is generally thought of as GOG where the price is determined by the interplay of supply and demand and is traded over a variety of different periods (daily, monthly, annually or other periods). Trading takes place at physical hubs (e.g. Henry Hub) or notional hubs (e.g. NBP in the UK). This will also include longer term contracts into markets where there is little or no trading at hubs, but where the price is linked to hub prices in markets where there is liquid trading.

- **BILATERAL** – there is no trading market or hub but there are multiple buyers and sellers – distinguishing this from BIM – providing the competitive element. This is largely in parts of Australia, Russia, Argentina and now China. In many of these markets, the GOG pricing will be influenced by significant regulated segments.

- **SPOT LNG** – simply spot LNG cargoes into markets where there are no trading hubs, but the price of the cargoes reflects the current supply-demand situation.

The figure below breaks down the GOG percentages over the fourteen surveys into these 3 categories.

Figure 22 Changes in GOG by Type 2005 to 2021\(^\text{12}\)

\(^{12}\text{In order to emphasise changes the vertical axis starts at 25%}\)
The Trading category is by far the largest – dominated by North America and increasingly Europe – and has increased from 30% of total world consumption in 2005 to 37% in 2021 – a rise of 7 percentage points. The Bilateral category has risen from 1.1% to 7.8% - a rise of 6.7 percentage points, while the Spot LNG category has risen from 0.2% to 4.1% - a rise of 3.9 percentage points. The total rise in GOG between 2005 and 2021 has been almost 19 percentage points.

Over the period as a whole, around one third of the rise in GOG has come from the Bilateral category and is largely in Russia together with much smaller changes, in volume terms, in Argentina and, latterly, Australia, Israel, Nigeria and China. The rise in the Trading category is almost entirely due to changes in the European market, both in terms of increased trading volumes and contract renegotiations. This was supplemented at the end of 2014 indexation to hub prices in India, away from RSP for domestic production, in 2019 by rising LNG imports into Europe, and in 2021 by increased hub-indexed LNG contracts. The changes in the Spot LNG category have been variable over time reaching a peak of 2.2% in 2012 before falling back in 2013 and 2014 as the number of spot LNG cargoes declined. The share then rebounded in 2015, as spot LNG cargoes recovered, declined again in 2016 as LNG trade became more contracted, followed by sharp rebounds in the four years to 2020, before a slight fall in 2021.

3.7.2 Change in GOG and OPE by Consumption Category

In terms of the three different categories of consumption – domestic production, pipeline imports and LNG imports, the figure below shows the changes in GOG over the fourteen surveys.

Apart from the rise in domestic production share between 2007 and 2010, as a result of the changes in Russia and, to a lesser extent, in Europe, the share of GOG has been relatively stable. Similarly, the share in LNG imports has also not changed much since 2007, fluctuating largely in response to changes in spot LNG cargoes, until the increases in the last five years. The big rise has been in pipeline imports, almost all in Europe, although that has levelled off since 2017, and even declined slightly in 2021, with the rise in LNG imports driving the overall rise in GOG.
The similar chart for changes in OPE, is the mirror image of the GOG chart for LNG imports, and for pipeline imports. For domestic production, the share declined continuously from 2005 to 2013, principally down to the changes in Europe, before recovering by some 3.5 percentage points through to 2016, principally reflecting the pricing changes in China and, to a lesser extent in Australia and Vietnam. OPE pipeline imports picked up in 2021, reflecting the rapid demand growth in Turkey and Spain and increased pipe imports into China from Central Asia and Russia.

3.7.3 Where are the main OPE areas?

As noted earlier, the share of OPE had fallen to 19.1% of total world consumption in 2021, from 24.3% in 2005. In volume terms, however, there was an increase to 797 bcm from 697 bcm in 2005. Total world consumption grew by 46% over the same period - some 1,300 bcm.

Out of the 797 bcm in 2021, some 326 bcm was domestic production, 197 bcm was pipeline imports and 274 bcm LNG imports. Domestic production has grown in volume terms since 2005, but the share in 2021 was only a couple of percentage points above the share in 2005 – see figure 23 above. Pipeline imports had fallen sharply in volume terms, as a result of the shift away from OPE in Europe, while LNG imports grew in volume terms, with the share declining as already discussed.

41% of OPE in 2021 was in domestic production, and, as shown in the figure below, of this 48% is in China. It is mainly in the Asia and Asia Pacific regions. The categorisation, in some countries, as OPE is not necessarily as clear as the familiar oil indexation in both pipeline imports and LNG imports, and there is often an overlay of regulation involved. China is a good example of this, where city-gate prices from domestic production have been very broadly linked to liquid fuels prices for a number of years, but the decision to change these prices has been overseen by the state. If China continues with pricing reforms, then this element of domestic production could change to a different category – possibly GOG – but again this would be a very different GOG from that seen in the North American and European trading markets\(^\text{13}\).

\(^{13}\) As for Russia where the large GOG category is very different from European GOG.
Pipeline imports are the more traditional type of oil indexation, seen initially in Europe but now mostly replaced there by GOG. China is the largest OPE pipe importer, with imports from Central Asia, Myanmar and, since the end of 2019, from Russia. In Asia Pacific, Thailand and Singapore imports are also OPE, while in Europe, Turkey, Italy and Spain are the largest OPE importers, with smaller volumes in Germany, while Other Europe is largely Southeast Europe, including Greece, and the Baltic countries.

While the share of OPE in LNG imports has fallen significantly since 2016, as GOG has risen, it still represents the majority of LNG imports. Out of the 274 bcm in 2021, some 205 bcm (or 75%) was in just 5 markets - Japan, China, South Korea, Chinese Taipei and India. The rest of the Asia and Asia Pacific regions added an additional 26 bcm (or some 9%) - half from Pakistan and Thailand. Spain, France and Turkey in Europe accounted for some 22 bcm. Kuwait, Chile, Italy, Portugal, Poland, UAE and Greece also have OPE LNG imports.
Section 4
Wholesale Price Levels
4.1 INTRODUCTION
This section covers the full results and analysis on wholesale price levels at the overall World level and comprises:
• The results for the 2021 survey; and
• Comparisons across the fourteen surveys.

In considering wholesale price levels across regions, countries or price formation mechanisms, it should be noted that the wholesale price can cover different points in the gas chain - wellhead price, border price, hub price, city-gate price - so the comparison of price levels is not always “like for like”. *Comparisons, therefore, should be treated with utmost caution and taken only as a broad indication.*

4.2 2021 SURVEY RESULTS

4.2.1 Price Levels by Price Formation Mechanism
The figure below shows a snapshot of wholesale prices for 2021 by price formation mechanism\(^{14}\).

![Wholesale Prices in 2021 by Price Formation Mechanism](image_url)

The highest prices in 2021 were still in the OPE category at $8.84 per MMBTU, despite the rise in spot prices around the world, as is discussed later. Prices in the GOG category were measured at $6.24 per MMBTU. The price level in the GOG category is heavily influenced by the relatively low prices in North America and Russia, but the rise in global spot prices, as the market tightened, increased the GOG prices relative to 2020. If North America and Russia were excluded then the balance of GOG prices would be, on average, $11.01, which is significantly higher than the OPE levels.

In the regulated categories, it can be seen that the prices in the RCS category are higher than those in RSP and, in turn, RBC - which were the lowest at $1.49 per MMBTU in 2021.

\(^{14}\) It should be noted that on an individual country basis no break down has been made of the price level for different price formation mechanisms within the country, so the same price level is applied to all mechanisms. This simplifying assumption is not considered to have any material influence on the conclusions.
Wholesale prices can obviously vary significantly from year to year. In 2021, prices in Europe were by far the highest, reflecting the rising spot prices, at $13.38 per MMBTU. Asia Pacific had prices averaging $8.20 and Asia had average prices at $7.96. OPE is the primary pricing mechanism in both regions, so were less impacted by the higher spot prices. Prices in North America in 2021 were below the average for Latin America, but had risen above other regions. Prices in the Former Soviet Union, in $ terms, and the Middle East, were at broadly similar levels, with Africa prices slightly higher. These conclusions are further reinforced when wholesale prices are viewed at the country level. The figure below includes all markets with consumption greater than 8 bcm in 2021.

The highest wholesale prices in 2021, for the first time since 2005, were found in Europe and not the main LNG importing markets in Asia Pacific. The highest prices were in Poland, followed by Italy, Austria and Germany, and then Ukraine, which imports spot gas from Europe. The main LNG importing markets – Japan, South Korea, China, Chinese Taipei and Singapore – are now lower down the list. Prices in Spain were significantly lower than other European countries, reflecting the higher share of OPE prices. Prices remained relatively lower in the USA, comparable to some African and Middle East countries. Prices in Russia have continued to be well below other countries, which, a few years previously, they had been above, as a consequence of the large rouble depreciations. At the bottom of the chart are generally countries where wholesale prices were subject to some form of regulation and often below the cost of production and transportation – Turkmenistan, Algeria and Venezuela.
Figure 30 Wholesale Prices in 2021 by Market
The highest wholesale prices in 2021, for the first time since 2005, were found in Europe and not the main LNG importing markets in Asia Pacific. The highest prices were in Poland, followed by Italy, Austria and Germany, and then Ukraine, which imports spot gas from Europe. The main LNG importing markets – Japan, South Korea, China, Chinese Taipei and Singapore – are now lower down the list. Prices in Spain were significantly lower than other European countries, reflecting the higher share of OPE prices. Prices remained relatively lower in the USA, comparable to some African and Middle East countries. Prices in Russia have continued to be well below other countries, which, a few years previously, they had been above, as a consequence of the large rouble depreciations. At the bottom of the chart are generally countries where wholesale prices were subject to some form of regulation and often below the cost of production and transportation – Turkmenistan, Algeria and Venezuela.

4.3 COMPARISONS 2005 TO 2021

4.3.1 Changes in Wholesale Prices by Price Formation Mechanisms

The figure below compares changes in wholesale price levels across the eleven surveys by price formation mechanisms.

Figure 31 Wholesale Price Levels 2005 to 2021 by Price Formation Mechanism

In 2005 the highest prices by price formation mechanism were for GOG at $8.10 per MMBTU, but these declined between 2005 and 2009, before levelling off at around $4.50, followed by small rise to the $5.30 range in 2013 and 2014. This was followed by sharp declines in 2015 and 2016 reaching $3.04. There was a rise in 2017 to $3.78, with prices rising in all markets, and in 2018 to $4.36, largely driven by rising European hub prices. GOG prices fell sharply in 2019 as spot prices collapsed to their lowest levels since 2016, followed by another – Covid-induced fall – in 2020 to $2.80 – the lowest level ever recorded. In contrast OPE prices rose significantly from $5.47 per MMBTU in 2005 to just under $11.00 in 2013, as oil prices increased, remaining around that level through 2014, before declining to around $8.00 in 2015 and $6.00 in 2016, following the oil price fall. OPE prices also rose back in 2017 to $6.58, as oil prices recovered, and to $7.59 in 2018, before declining slightly in 2019 to $7.40, and further to $6.12 in 2020. There were also general increases in prices over time in the regulated price categories as well, through to 2014, although in 2015 and 2016 this trend was reversed, principally due to sharp dollar declines in the FSU as currencies depreciated. These again were reversed in 2017 as some predominantly regulated countries increased prices. Regulated prices levelled off in 2018 and 2019, with weak FSU prices being offset by stronger prices elsewhere, but declined slightly again in 2020. In 2021, prices in the OPE and GOG categories both rose, reflecting higher oil prices and much higher spot prices in the main GOG markets.
4.3.2 Changes in Wholesale Prices by Region

The figure below compares changes in wholesale price levels across the thirteen surveys by region.

Figure 32 Wholesale Price Levels 2005 to 2021 by Region

At the world level, on average, wholesale prices have risen between 2005 and 2013 from around $4.47 per MMBTU to $5.57. This rise was across all regions apart from North America, where the dramatic increase in shale gas supply has led to a sharp drop in prices – with a small rebound in 2013. The rise in prices in Europe and Asia Pacific has been well documented and studied, but prices have also risen in Asia, largely due to increases in prices in China, both as more gas was imported and regulated domestic prices increased, and in India for similar reasons.

In 2014, though, prices in Europe began to decline as the market weakened and, in the FSU especially, as the rouble depreciated. This accelerated in 2015, and prices also fell back in North America and Asia Pacific on the back of weak demand, abundant supply and the impact of the sharp fall in oil prices. However, some regions did not see the sharp 2014 and 2015 fall in prices. These were Asia, as pricing reforms and inertia increased and kept prices up in China and India, the Middle East – as regulated prices were increased in Bahrain, Oman and Iran, with other prices staying stable – and Africa – where prices increased in Egypt, Nigeria and Algeria.

In 2016, prices declined further in all regions apart from Africa and the Middle East, with average world wholesale price falling to $3.35 per MMBTU, the lowest level in all surveys, up until then.

In 2017, prices generally rose again in all regions as the global supply – demand situation tightened and oil prices rose. Price also increased, however, in the more regulated regions of the Former Soviet Union, Africa and the Middle East.

In 2018, prices increased in all regions except for the Former Soviet Union, where Russian prices fell in $ terms. The average world wholesale price in 2018 was $4.38 per MMBTU – the highest average price since 2014.

These rises were reversed in 2019, the average price falling to $3.88 per MMBTU, as global supply raced ahead. Prices across
the world declined again in 2020, with the average price reaching its lowest ever level at $3.24. Since 2015, prices in Asia, Asia Pacific and Europe broadly tracked each other, but this link was broken in 2019 as spot prices collapsed which impacted the European market much more than Asia and Asia Pacific where prices barely changed from 2018 levels. These differences widened further in 2020 as spot prices collapsed again. European prices are now much closer to the World average than they have ever been, breaking decisively from Asia and Asia Pacific prices.

2021 saw a very sharp increase in average European prices to some $13.38 per MMBTU from $3.75 in 2020. This took European prices above Asia Pacific prices for the first time since 2013. Average world wholesale prices rose to $5.54 per MMBTU from $3.24 in 2020, just below the highest ever global average of $5.58 in 2013. Prices in North America still remained relatively low but doubled in 2021, reaching their highest level since 2014.

4.4 ANALYSING THE RISE IN 2021 AND 2022 PRICES

In looking at wholesale price levels, the survey only really considers the annual average prices. 2021 and into 2022 has seen unprecedented increases in spot prices globally and also in price volatility, from the depths of 2020 as Covid-19 crippled the world economy. In order to understand, in more detail, what happened to prices in 2021, and in to 2022, it is worth considering the progression in monthly prices. The monthly, rather than daily, prices better reflect the underlying supply-demand balance in the world, as they are the most traded contracts in the market.

Before considering 2021 and beyond, a brief look back to 2019 will help set the scene. In 2019, prices in Asia and Europe were on a downward trend with plentiful new LNG supply coming on the market, against the background of only slowly rising demand. As a result, prices dipped briefly below $4 per MMBTU in Europe. As Covid-19 hit in 2020, global demand fell, with supply continuing to rise in the first half of the year, and prices collapsed further – TTF reached a low of $1.55 in June 2020, JKM a low of $2.06 in July 2020 and Henry Hub a low of $1.50 in the same month. The result was that a lot of LNG cargoes, especially from the US, were shut-in during the summer of 2020.

With the impact of Covid-19 receding late in 2020, the scene was set for 2021 and a “perfect storm” hit the markets. The 2020/21 winter was uniformly cold across the northern hemisphere, with Europe, Russia and Asia being hit. Gas demand rose sharply and the JKM price shot up in February 2021. LNG was diverted to Asia, away from Europe, and prices in Europe remained subdued because of high levels of gas in storage in Europe. Gas production in Russia was at record high levels through 2021 but much of that was needed to meet domestic demand and also refill depleted Russian storage.

Figure 33 Spot Prices 2019 to 2022

Data sources are S&P Global and Argus
At the start of summer 2021, demand growth remained strong, especially in China, as the world economy recovered from Covid-19, and the lack of rainfall in Latin America, led to severely reduced hydropower in Brazil, with LNG imports rising sharply to offset the shortage. Europe and Asia were also trying to refill their storage, as was Russia. At the same time LNG export capacity was declining rather than increasing, with feedgas issues at plants in Trinidad and Nigeria, extended maintenance at numerous plants, catching up from missed maintenance periods in the Covid-hit 2020, plus technical issues at a number of other plants and Norway’s export plant being down because of a fire in late 2020. All this led to a continuous run-up in prices throughout the summer.

Russian pipeline flows to Europe remained at relatively strong levels through August, but then Russia reduced spot gas volumes on offer, while at the same time, the European buyers began reducing their contracted volumes nominations\(^{16}\) and buying more on the spot market. With strong demand, prices rose sharply again in the final quarter of 2021. Even Henry Hub prices began rising, driven by higher demand, both domestic and for LNG exports, plus the need to rebuild storage with less abundant supply in a further tightening market.

Entering 2022, this pattern of strong demand and tight supply was repeated, so even before the start of the Russia-Ukraine conflict, prices had reached a record of well over $30 per MMBTU. Following the conflict, prices jumped again on the fear that pipeline flows from Russia could be dramatically reduced. With Russian flows continuing at even higher levels, as European buyers stepped up their contract purchase nominations, prices eased back slightly. Europe began to import substantially more LNG, with cargoes diverting from Asia and Latin America on the better price offering. Increasing LNG supply helped as well, as the supply issues from 2021 were gradually resolving and new plants in the US came online to provide additional volumes. This was also helped by sharp declines in China’s LNG demand, reflecting continuing COVID lockdowns, and weaker demand in Brazil as hydropower picked up.

In April and May of 2022, pipe flows from Russia to Europe began to fall off again, with flows to Russia’s state company Gazprom’s European subsidiaries stopping and contracts cancellations when buyers refused to comply with the new roubles currency payment mechanism proposed by Gazprom. In June, flows on Nordstream 1 pipeline (the main supply route from Russia to the European consumers) fell sharply, ostensibly because of reduced compressor availability, with one compressor being in Canada for maintenance and several others offline awaiting maintenance. This pushed prices even higher, reaching over $50 per MMBTU towards the end of June for both TTF and JKM.

The map below illustrates which were the high and low-priced markets in 2021. The markets in red are where the wholesale price was above $8 per MMBTU in 2021, in yellow where the price was between $4 and $8 per MMBTU and in green below $4 per MMBTU. Europe was dominated by the high-priced markets in 2021, with a few outside Europe, especially in Asia. These markets are those which are largely more dependent on imports and/or markets where gas is heavily traded. The markets in yellow also include those which have at least some imports, so are somewhat exposed to international prices, while the lower-priced markets in green, generally have a very high level of domestic production, importing little or no gas.

The story of prices is still developing, and the current very high prices are having an impact on demand in many parts of the world, especially in the currently inflated-price markets in red in the chart below and, to some extent, in those in the mid-range yellow as well. It should be noted, however, that the rise in the GOG share in the LNG market, as described in section 3.4, to just under 50% of global LNG imports, is a fundamental reason why the global gas market has been able to respond very effectively to the significant change in LNG demand and changing LNG flow needs. Most recently with LNG being diverted to Europe to replace declining pipe imports from Russia. GOG pricing, whether as spot LNG or into traded markets, is the very definition of flexibility, which is what is required in the current turbulent market. In other words, the market was able to send effective price signals, for the supply to go to where it was needed most in a situation of an extremely tight market, with no excess capacity and demand growth outpacing new supply additions.

\(^{16}\) Buyers nominate on a daily basis the amount of gas they want to receive under the long term contract within a range specified in the contract.
Figure 34 Wholesale Price Map 2021
Section 5
Global Gas Price Convergence
5.1 INTRODUCTION
In the period since the surveys began in 2005, it is generally recognised that the global natural gas markets have become more integrated through increased LNG trade, increased market related pricing and gas trading hub development. It might be expected, therefore, that global gas prices would converge, as markets became more integrated. However, the conventional wisdom is that of global gas price divergence, based on a few regional gas price markers such as Henry Hub, NBP and Japanese import prices, especially until 2015. A casual look at figure 32 on wholesale price levels by region would appear to confirm the conventional wisdom, as the differentials between Asia, Asia Pacific and Europe prices, on the one hand, widened compared to most other regions through 2015.

This section contains an analysis of whether gas prices have been converging on a global basis over the years of the survey, using the wholesale price data from the fourteen surveys.

5.2 MEASURING PRICE CONVERGENCE
The wholesale price surveys have resulted in a unique database with data on gas price formation mechanisms, gas volumes, and annual average gas prices of well over 100 markets. The database enables analysis of different subsets of countries, categorized by properties such as price formation mechanism, region, and shares of imports. This has been used to shed more light on the apparent contradiction between the expectation of price convergence based on economic theory and market developments and the conventional market view of gas price divergence. The large number of countries available in the database, as well as the use of the coefficient of variation as a measure for price convergence can provide new insights.

The coefficient of variation of prices of a dataset in a certain year is determined by the standard deviation divided by the mean value of these prices. The amount of absolute price variation (standard deviation) is thus measured relative to the average price in a certain year. A low coefficient of variation indicates a higher level of price convergence and vice-versa. This measure is particularly suitable for datasets with a limited number of data points (in our database 14 years), for a large number of price lines (in our database more than 100 markets), and the ability to subdivide into subsets of countries with different mean gas prices.

5.3 PRICE CONVERGENCE USING THE SURVEY DATA
For the convergence analysis of the “full IGU dataset” in this report as compared to last year’s analysis, we have removed data from the survey of countries with no price, and with no or very limited volumes (< 1 bcm per year). This results in a rather stable set of meaningful gas prices with limited changes in number of countries over the years (93 markets in 2021).

As a background to the methodology used, the graphs of the (unweighted) average price and the standard deviation are included below. The pattern of change over the years of the average price and standard deviation are similar. The level of standard deviation is firstly related to price level. When a correction is made for the price level (standard deviation divided by average price), the resulting coefficient of variation shows the relative variance of prices. This can be used as an indication of the level price convergence.

In the period 2005 to 2020 the coefficient of variation of gas prices of this full dataset declined by 15 percentage points, with the sharpest drop between 2012 and 2017, indicating global gas price convergence. There was a small rise in 2018, suggesting a slight divergence, marginally reversed in 2019 and 2020. This trend of a decreasing coefficient of variation is consistent with our expectations based on the economic theory of the Law of One Price and can be seen as an indicator that the global gas markets were converging. However, in 2021 the coefficient of variation rose back to just below 2005 levels. Clearly the previously unseen price developments in the global gas markets (as mentioned in 4.4) have had different impact in individual countries and regions, as can be seen in figure 31.

17 The analysis of global gas price convergence was undertaken by Floris Merison of Gasterra
18 The economic theory of the Law of One Price states that, in a perfect market, potential arbitrage opportunities between countries are immediately exploited by market participants, leading to convergence to one single price. With growing LNG trade and more markets involved, it might be expected that global gas prices should have converged, due to increasing arbitrage possibilities and further market integration.
Figure 35 Average Price and Standard Deviation of the Full Dataset

Figure 36 Global Gas Price Convergence
In order to be able to trade to exploit arbitrage opportunities (leading to gas price convergence), countries should be connected to the global gas market. Connectedness to the global gas market could be realized through physical gas imports or through market related pricing. We therefore looked at a subset of countries with a minimum level of gas imports (10%) and a subset of countries with market related prices. The result is as expected, with the coefficient of variation being much lower in a group of countries connected to the global gas market through physical imports and/or market related prices. Importing countries and market related pricing countries had very similar levels of convergence, with a large overlap in terms of data. As would be expected, the group of countries with both gas imports and market related prices has the lowest coefficient of variation.

Figure 35 Average Price and Standard Deviation of the Full Dataset

Figure 38 Price Convergence for Market Related Prices
We have defined countries with market related prices as countries where the majority of gas is priced through market related price formation mechanisms – OPE, GOG, BIM and NET – with OPE and GOG having by far the larger share. Non-market related prices mainly include the regulated price formation categories: RCS, RSP and RBC.

When we look within the group of countries with market related pricing, we see that a subset of countries with OPE as the main price formation mechanism shows more price convergence i.e. a lower coefficient of variation. This is not surprising, since these prices are largely all indexed to crude oil, gasoil and/or fuel oil prices. The relative stability of coefficient of variation of the subset of countries with OPE is interesting to note.

Figure 39 Price Convergence for OPE Prices

Figure 40 Number of Markets where OPE or GOG is the Majority Mechanism
As can be seen in the above figure, the number of markets with a majority of gas consumed priced against GOG has increased considerably. In the first years, the number was too small and dynamic to calculate a meaningful coefficient of variation, but from 2013 the population became large enough to result in a more stable coefficient of variation, at a level lower than the total group of countries with market-related gas prices and approaching the level of price convergence of the group of countries with OPE until 2020. In 2021 the gap in price convergence between the groups of countries with GOG and OPE is widening again, with the spike in GOG prices in Europe as a major reason.

Figure 41 Price Convergence for Market Related and GOG Prices

Figure 42 Price Convergence for OPE and GOG Prices
When we look at the different IGU regions, Europe is the only region with sufficient countries to make meaningful convergence calculations. Here we can conclude that there is more price convergence amongst gas importing countries with market related prices within Europe than on a global level, since the decline in the coefficient of variation had been greater than in all importing countries with market-based gas prices. This, again, is not surprising since intraregional trade of natural gas is usually easier and less costly than interregional trade. However, in 2019, 2020 and 2021 there was less convergence with the gap between OPE and GOG prices widening globally and even within Europe.

In contradiction to the general trend of price divergence in 2021 as compared with earlier years, prices within the group of LNG importing countries 2021 actually did not diverge. This is possibly a sign that the global LNG market is getting more competitive and mature. During the last 3 years the number of LNG importing countries have been rather stable, before this the differences year-on-year in the level of price convergence of this group was mainly due to differences in the composition of this group. The large and stable group of countries with pipeline imports followed the general trend of price divergence in 2021. This could possibly be an indication of less competition than in the more global LNG market. Producers and consumers connection through pipelines clearly are somehow “locked in” and have less alternatives than producers/ consumers connected through LNG.
In recent years, the shale gas revolution has made the North America region (Canada, Mexico and United States) virtually self-sufficient with little or no LNG imports, from outside the region. As a result, the region has become effectively disconnected from the global gas market. Looking at a subset of countries, without these three countries, shows that the trend of global gas price convergence is more distinct with no, effectively disconnected, North American countries. In 2018, the influence of the start-up of large LNG exports from the USA cannot yet be seen, with USA and Canadian prices still at much lower levels than market related prices elsewhere. In 2019 through 2021, there was a small sign that the gap between price convergence including and excluding North America was beginning to narrow a little, which might be expected if North America becomes more interconnected with the global market. However, the gap still remains; The usage rate of the export terminals is at full capacity, so this is still a bottleneck for full connection. In addition, the relatively high LNG export costs (liquefaction and shipping) combined with the low gas prices in North America is a reason for price divergence with the rest of the world.

5.4 CONCLUSIONS

This analysis shows that global gas prices had been converging continuously since 2005, indicating further globalisation of the gas markets, up until 2017. The increasing convergence then stalled and in 2021, not surprisingly, prices diverged again, largely eliminating the convergence since 2005. The trend of price convergence, through 2015, is against the conventional market wisdom of gas price divergence in the years up to 2015, but in line with developments such as the growth of LNG trade and increased market-related gas pricing.

Up until 2015, it is also concluded that there is more gas price convergence amongst countries (1) with market related pricing, (2) which are connected with the global gas market through gas imports, (3) with oil-indexed gas prices, and since 2014 with gas-indexed prices, and (4) within Europe. The trend of global gas price convergence in the period 2005 – 2020 is more distinct when we exclude the data of the North American countries, which were effectively disconnected from other markets until the last few years.

Since 2017, however, there was relative stability in the coefficient of variation, other than for 2018, suggesting that the trend of more price convergence had stalled or come to an end. 2021, however, undid all the convergence since 2005 as spot prices rose sharply. The extraordinary price developments in the global gas markets in 2021 clearly have had different impact in individual countries and subsets of countries.
Appendix A
Regional Level Results
A.1 NORTH AMERICA

A.1.1 North America 2021 Survey Results
North America consumption in 2021 was some 26% of total world consumption – around 1,075 bcm.

Figure 46 North America Price Formation 2021

GOG clearly dominates the North American market with fully liquid trading markets in the USA and Canada. The wholesale price in Mexico used to be referenced to prices in the USA, but there are now reference prices based on trades in Mexico. The small amount of NP is in Mexico where Pemex uses the gas in the refinery process and for enhanced oil recovery.

A.1.2 North America Comparison 2005 to 2021
Price formation mechanisms have not changed at all, in effect, in North America over the nine surveys. Apart from the small amount – under 1% - of NP which, as noted earlier, is gas used by Pemex in refinery processes and enhanced oil recovery, North America was all GOG in 2005 and has remained so ever since. In fact, if the surveys had gone back even further, it is likely that the USA at least would have been GOG since the early 1990s.

Figure 47 North America Price Formation 2005 to 2021
A.2 EUROPE

A.2.1 Europe 2021 Survey Results
European consumption in 2021 was some 13.5% of total world consumption - around 570 bcm.

GOG remains the largest share in Europe, standing at 77%, totalling around 438 bcm. Some 74 bcm is domestic production, mainly Netherlands and UK, with around 302 bcm being pipeline imports, predominantly all the northwest European countries plus Italy in the Mediterranean area, but also increasingly the central European countries of Poland, Czech Republic, Slovakia, Austria and Hungary. LNG imports now accounts for 62 bcm, of which just over half is deemed as being in the traded category in the trading markets of the UK, France, Italy, Belgium and Netherlands, with the remaining quantities being spot cargoes into those market and the more traditional LNG importing countries.

OPE is now at 23%, totalling around 129 bcm, and is predominantly pipeline imports (98 bcm) now into only half of the European countries, followed by LNG imports (30 bcm) into Spain, France, Italy, Turkey, Portugal, Poland and Greece, with domestic production (1 bcm) in a handful of countries.

RSP also accounts for some 2 bcm and is domestic production in Hungary and Croatia.

A.2.2 Europe Comparison 2005 to 2021
Europe is one of the regions where the most significant changes in price formation mechanisms have taken place. There has been a broadly continuous move from OPE to GOG since 2005, with GOG’s share increasing from 15% in 2005 – when OPE was 78% – to 80% in 2020, before falling back to 77% in 2021, with OPE at some 23%. The RCS category - domestic production in Romania - has steadily declined to zero, while RSP declined in 2017 as it disappeared in the Polish market.

The changes have reflected a number of factors over the years; initially a decline in the volume of gas imported under the traditional oil indexed contracts, being replaced by imports of spot gas and increasing volumes traded at hubs, followed by the ending of contracts or the renegotiation of the terms to include a proportion of hub/spot price indexation in the pricing terms, or even a move to 100% hub price indexation, and in some cases, a reduction in the take-or-pay levels. The renegotiations saw the introduction of hybrid contracts19, although it is thought in the last few years even some of these hybrid contracts are now purely hub/spot indexation.

19 Under the pricing formulas, oil indexation is partly maintained but within a price corridor set by hub prices. Such contracts are sometimes called quasi-oil indexed but could equally be referred to as quasi-hub indexed. It is suggested to the respondents to the wholesale price survey that such hybrid contracts are split between GOG and OPE, with the proportion dependent on how narrow the price corridor is. For example, if the price corridor is very narrow, the contract is effectively only notionally linked to oil prices and therefore would be allocated more towards GOG. In contrast if the band is relatively wide then more would be allocated to OPE.
The trend towards GOG and away from OPE, was reinforced by the continued decline in domestic production in the UK in the old legacy contracts, which were in the OPE category, to be replaced by pipeline and LNG imports, all at GOG. In 2019, there was a further rise in GOG as LNG imports surged with rising spot LNG cargoes in many traditional LNG importing markets. In 2020 there was a small fall back in GOG LNG imports as Spain switched more to OPE LNG. In 2021, OPE recovered some ground as demand rose sharply in Turkey, Italy and Spain met by rising OPE pipeline imports.

The change in price formation mechanisms in Europe was not universal across the region. The figures below summarise the changes in the key sub-regions.

Northwest Europe\(^\text{22}\) has seen the most dramatic change in price formation mechanisms, with a complete reversal in the ratio of OPE to GOG from 72% OPE and 28% GOG in 2005 to 5% OPE and 95% GOG in 2020, as a result of increased hub trading and contract renegotiations, as noted above.

\(^{22}\) Belgium, Denmark, France, Germany, Ireland, Luxembourg, Netherlands, UK
Central Europe\(^{21}\) has also, more recently, seen significant changes. OPE has declined from 85% in 2005 to 12% in 2020, while GOG has increased from almost zero in 2005 to 85% in 2020, principally reflecting increased imports of spot gas, often from Germany, and contract renegotiations. However, in 2017 the GOG increase – 59% to 73% – was mostly down to the switch from RSP in Poland as a result of regulatory reform.

There has been much less change in other areas of Europe such as the Mediterranean\(^{22}\), where OPE has only declined from 100% in 2005 to a low of 47% in 2020, and GOG rising from nothing to 53%. This initially reflected spot LNG imports in the sub-region and some spot pipeline imports into Italy, as well as changes in the pricing of domestic production in Italy. However, in 2014 this was further enhanced by the renegotiation of the main Russian contract into Italy, and in 2017, the change in the Algerian contract into Italy. In 2019 spot LNG imports increased but fell back in 2020 as Spain increased the share of OPE LNG imports. In 2021, with rising OPE in Turkey, Italy and Spain pipeline imports, the OPE share jumped back to 54% and GOG down to 46%.

\(^{21}\) Austria, Czech Republic, Hungary, Poland, Slovakia, Switzerland
\(^{22}\) Greece, Italy, Portugal, Spain, Turkey
In Southeast Europe GOG began in 2013 as Romania began liberalising domestic production pricing, moving away from RCS - a process which was completed in 2018. There is also a small amount of GOG in Croatia and Slovenia. The rise in OPE in 2012 reflected a switch from BIM in Bulgaria, where until 2010 there was payment in kind for transit (BIM) which then became a cash payment with the gas being purchased under the same OPE terms as the other imported gas. OPE fell back again in 2013 and 2014 as imports declined in Romania, before stabilising in 2015. 2017 and 2018 saw more declines for OPE, as Romanian imports fell. The OPE share rose again slightly in 2019 as consumption fell in the now predominantly GOG market of Romania, but has fallen back again in 2020, as imports into Romania from Russia declined, and there was little change in 2021.

In Scandinavia and Baltics, GOG has gained ground in recent years in Sweden, Norway and more recently in LNG imports into Lithuania and had risen to 60% in 2016, almost all at the expense of OPE, which is now down to 10%. The early switch in 2009 from BIM to OPE was in the contiguous Baltic States. The large gain in GOG in 2016 reflected, in part, the switch from NP and to GOG in Norway, as all domestic production was priced at European hub levels. GOG is now at 90%, having risen sharply in 2021, as Finland moved to GOG from OPE.

23 Estonia, Finland, Latvia, Lithuania, Norway, Sweden
24 Previously gas used in refineries and gas processing was thought not to be priced so allocated to NP
A.3 ASIA

A.3.1 Asia 2021 Survey Results
Asian consumption in 2021 was some 12.5% of total world consumption – 517 bcm.

OPE at 65% totals some 338 bcm and is principally domestic production, pipeline and LNG imports in China, LNG imports together with a small amount of domestic production in India, and LNG imports and domestic production in Pakistan where the regulator sets gas wellhead prices but linked to the oil price.

GOG at 22%, some 115 bcm, is largely domestic production in India, reflecting the mainly hub linked pricing formula, spot LNG imports into India, China and Pakistan and domestic production in China, reflecting the direct sales of coalbed methane at market prices from upstream producers to large users in power and industry.

RCS accounts for some 12%, totalling around 40 bcm of domestic production in China with around 19 bcm in Bangladesh. The small amount of BIM at 1% - 4 bcm is in Bangladesh.

A.3.1 Asia 2021 Survey Results
The changes in price formation mechanisms in Asia have been dominated by China and India. Firstly, there has been an increase in OPE from around 35% to 65% over the fourteen surveys, largely at the expense of the regulated categories and BIM. The move from BIM to OPE reflected the change in the pricing of the Qatar LNG contract to India between 2007 and 2009, while the more recent rise in 2010 and 2012 was due to the start of pipeline imports into China from Turkmenistan, which are oil indexed under the contract. The change from RSP to RCS in China in 2009 came as the regulator increased prices to economic levels. Finally, there was the further change in domestic production pricing, initially in two provinces in China, before extending nationwide to all sectors except residential and fertilizer, again increasing OPE to 67% in 2016. In 2018, OPE was 68% rising from 64% in 2017, as China extended the pricing reforms to city-gate pricing to residential customers. The rise in GOG in 2015 to some 13.5% reflected the pricing reform in India, linking domestic prices to a basket of market hub prices. GOG increased further in 2017 to 14% and to 17% in 2018, partly as spot LNG imports increased in India and China. GOG share rose in 2019 and 2020, at the expense of OPE, reflecting a further increase in spot LNG imports across the region. OPE and GOG rose again in 2021 at the expense of RCS in China.
The changes in RSP – down from 48% in 2005 to almost zero in 2015 was almost all due to the change in price formation in China as regulated prices were increased to economic levels, and the more recent change in India. Initially, RCS was the beneficiary, rising to 44% by 2012, but this has since declined with the pricing changes in China, partly offset by the move to more RCS in Bangladesh. The decline in RBC, from 10% in 2005 to zero in 2016, largely reflected changes in pricing in Bangladesh in 2009 and 2015 to RCS via RSP.

A.4 ASIA PACIFIC

A.4.1 Asia Pacific 2021 Survey Results

Asia Pacific consumption in 2021 was some 10% of total world consumption – 411 bcm.
OPE at 61% totals some 251 bcm, with LNG imports – predominantly in Japan, Korea and Taiwan, but also now including Indonesia, Singapore, Thailand and Malaysia – accounting for 143 bcm. Pipeline imports are some 20 bcm into Singapore, Thailand and Malaysia, while domestic production is 88 bcm – mostly Thailand but also Vietnam, Malaysia, Australia and the Philippines.

GOG at 26% totals some 107 bcm, of which 71 bcm is LNG imports mainly in Japan, Korea and Taiwan – but also some in Singapore and Malaysia, while the balance is domestic production in Australia and New Zealand.

BIM at less than 1% totals some 3 bcm, comprising domestic production in Japan.

RSP at 11% totals some 47 bcm and is domestic production in Indonesia, while RCS has almost disappeared and is domestic production in South Korea and Chinese Taipei. NP at 1% or 3 bcm is domestic production in Brunei and PNG consumed in the energy industry.

A.4.2 Asia Pacific Comparison 2005 to 2021

Until 2017, there were only minor changes in price formation mechanisms in Asia Pacific since 2005. GOG had risen from 13% in 2005 to as high as 22% in 2012, while OPE was broadly unchanged, with RSP down from 22% to 15%. After 2012, GOG declined through 2016 as spot LNG imports fell. This has since been reversed by the sharp rises in spot LNG imports in the last four years. The gradual decline in RCS to 2016 reflected the changing pricing in Vietnam towards OPE.

In 2017, however, there were significant changes in Malaysia, with pricing moving to RCS and OPE in domestic production away from RSP, which has fallen from 16% in 2012 to 9% in 2020. In 2020 there was a further significant change in Malaysia which changed almost all its domestic production pricing to OPE, with prices being linked to a netback price from LNG exports, and completely in 2021. GOG and RSP rose in 2021, with rising LNG (mostly the traded element) for GOG and increased Indonesia domestic production.

Figure 58 Asia Pacific Price Formation 2005 to 2021
A.5 LATIN AMERICA

A.5.1 Latin America 2021 Survey Results
Latin America consumption in 2021 was some 4% of total world consumption – around 160 bcm.

Figure 59 Latin America Price Formation 2021

OPE at 26% totals some 41 bcm, mainly domestic production in Brazil, pipeline imports into Brazil and Argentina and a proportion of LNG imports into Chile and Argentina.

GOG at 29% totals some 46 bcm, of which 23 bcm is domestic production in Argentina, Colombia and Peru. The balance is LNG imports into Brazil, Argentina, Chile, Colombia, Puerto Rico, Jamaica, Panama and Dominican Republic.

BIM at 3% totals some 5 bcm and is all domestic production to the power sector in Trinidad. NET at 8% totals some 13.5 bcm and is the balance of domestic production in Trinidad used as a feedstock in petrochemicals.

RSP at 16% totals some 25 bcm and comprises domestic production in Argentina, Peru, Ecuador and Bolivia, plus a small amount in Brazil. RCS at 8% totals some 13.5 bcm and is domestic production in Argentina. RBC at 9% totals some 15 bcm and is domestic production in Venezuela and a small amount in Chile. NP at 1% or 1 bcm is Cuban domestic production.

A.5.2 Latin America Comparison 2005 to 2021
The changes in price formation mechanisms in Latin America have seen a rise in GOG from 4% to 29%, a decline in RSP from 52% to 16% and a rise in RBC from 0% to 9% - the latter almost all in Venezuela. The rise in GOG in part is due to rising spot LNG imports in Argentina and Brazil, and a switch away from RSP to GOG in Argentina, and, eventually, a complete switch from RCS to GOG in Colombia. In Argentina, this reflected producers and marketing entities, being allowed to sell gas at unregulated prices to large eligible customers, such as power plants.
A.6 FORMER SOVIET UNION

A.6.1 Former Soviet Union 2021 Survey Results

Former Soviet Union consumption in 2021 was some 17% of total world consumption – around 700 bcm.

RCS at 36% is the largest share, totalling some 249 bcm and is almost all the major proportion of domestic production in Russia together with most of the domestic production in Azerbaijan. RBC at 13% or 90 bcm is domestic production in Kazakhstan, Turkmenistan, Uzbekistan and a small amount in Azerbaijan, while RSP at 12% or 87 bcm is a proportion of Russia domestic production (sold to the population) and Ukraine domestic production.
GOG at 33% totals some 233 bcm and is largely domestic production to the eligible large customer market in Russia, but also pipeline imports into Ukraine at hub prices from Europe.

OPE at 1% or 6 bcm is all pipeline imports into Russia, while BIM at 5% or 36 bcm represents other pipeline imports in the FSU region, principally from Russia to Belarus, but also Armenia, Georgia, Kazakhstan, Kyrgyzstan, Moldova and Tajikistan.

A.6.2 Former Soviet Union Comparison 2005 to 2021

The Former Soviet Union is another region, like Europe, where there have been significant changes in price formation mechanisms, largely based around Russia. From having domestic production completely in the RBC category in 2005, there was a switch to GOG as the independent producers began to compete with each other and Gazprom to sell gas to the power sector and large industrials, and the rising Gazprom regulated prices saw a switch from RBC to RCS, although in 2014 the regulated pricing to the population saw a move from RCS to RSP, maintained in 2015 and 2016. The other change was in intra-FSU trade where pricing switched from BIM to OPE, particularly in the Russia to Ukraine trade, and then during 2015 when Ukraine began importing from Europe at hub prices so switch to GOG from OPE. RSP lost share in 2019, with Russia and Ukraine volumes lower, while NP disappeared from Turkmenistan which moved wholly to RBC. In 2020, there was a further switch from RCS to GOG in Russia, and in 2021 GOG rose further reflecting rapidly rising gas demand in Russia.

[Figure 62 Former Soviet Union Price Formation 2005 to 2021]
Appendix A
Regional Level Results

A.7 AFRICA

A.7.1 Africa 2021 Survey Results
African consumption in 2021 was some 4% of total world consumption – around 173 bcm.

Figure 63 Africa Price Formation 2021

RBC at 57% or some 98 bcm, has the largest share and is domestic production in Egypt, Algeria and Libya.

RCS at 20% or some 34 bcm is domestic production in Egypt and Nigeria plus part of pipeline imports from Nigeria to Ghana, Benin and Togo.

RSP at 3% or some 5 bcm is domestic production in Equatorial Guinea, Gabon, Ghana, Morocco, Mozambique and Tanzania. OPE at 5% or some 9 bcm comprises pipeline imports into Tunisia and Morocco from Algeria, and a proportion of the pipeline imports from Nigeria to Ghana, Benin and Togo, as well as domestic production in Tunisia, South Africa and part of Ivory Coast and Tanzania.

GOG at 8% or some 15 bcm is part of domestic production in Nigeria (sales to the non-power sector) and domestic production in South Africa.

BIM at 6% or some 11 bcm is pipeline imports into South Africa from Mozambique and the balance of domestic production in Ivory Coast, part of domestic production in Ghana, plus domestic production in Cameroon. NP at 1% is Angola.

A.7.2 Africa Comparison 2005 to 2021
There was very little change in price formation mechanisms in Africa between 2005 and 2014, apart from the switch to RSP from RBC in 2012 in Nigeria, with some GOG as non-power markets were freed up. However, in 2015, Nigerian domestic production moved again from RSP to RCS as prices to power plants were increased, and also in Egypt there was a similar partial move away from RBC to RCS in some sectors, plus the start-up of spot LNG imports. In 2017, RBC gained at the expense of RCS and NET in Egypt as prices to the power sector were kept down and regulated to fertilizer plants. The main changes in 2018 was a decline in GOG as spot LNG imports into Egypt fell sharply and an increase in RCS in Egypt with more consumption met by domestic production. In 2019 and 2020, OPE and GOG declined as there was less trade, with RCS rising in 2019 as Egyptian production...
increased. The region remains dominated, however, by RBC, with gas prices largely subsidised. In 2021, GOG increased as South Africa switched in domestic production to prices based on international hub prices and Nigeria demand increased, with OPE declining.

Figure 64 Africa Price Formation 2021

A.8 MIDDLE EAST

A.8.1 Middle East 2021 Survey Results

Middle East consumption in 2021 was some 13.7% of total world consumption – around 570 bcm.

Figure 65 Middle East Price Formation 2005 to 2021
RSP at 74% or 423 bcm dominates the region and is domestic production in Iran, Saudi Arabia and the UAE with smaller amounts in Oman and Bahrain.

RBC at 3% or 16 bcm is domestic production in Iraq and Syria.

RCS at 1% or 9 bcm is part of Iran domestic production

BIM at 14% or 78 bcm is partly pipeline imports from Qatar to UAE and Oman and domestic production in Qatar and part of Israel domestic production.

OPE at 4% or 23 bcm is largely pipeline imports into Iran from Turkmenistan, some LNG imports into UAE, Jordan and Kuwait, and most of domestic production in Kuwait.

GOG at 4% or 22 bcm includes spot LNG imports into Jordan, UAE and Israel, domestic production delivered to petrochemical plants in Iran, where prices are partly linked to international hub prices, and domestic production in Israel.

NP is almost zero and is gas consumed in Yemen.

A.8.2 Middle East Comparison 2005 to 2021

The changes in price formation mechanisms in the Middle East have almost totally taken place between 2010 and 2012, when prices were increased significantly in Iran, moving from the RBC category to the RSP category. The other change was in small quantities of OPE and GOG as LNG began to be imported into Kuwait, UAE and, in 2015, into Jordan, plus the change in gas pricing to petrochemical plants in Iran. Kuwait also moved domestic production more towards OPE in 2016. LNG imports are, however, slowly increasing in the region which is introducing more market related pricing in the form of both OPE and GOG. In 2020, GOG increased as a result of changes in domestic pricing in Israel. There was little change in 2021.

Figure 66 Middle East Price Formation 2005 to 2021
Appendix B
Survey Methodology
The idea for a survey of wholesale gas price formation mechanisms arose at the beginning of the triennium leading to the 2009 World Gas Conference. The Strategy, Economics and Regulation Programme Committee (PGCB) had set up a new sub-group to consider gas pricing, with a key remit to carry out a comprehensive analysis of gas price formation mechanisms. The sub-group decided to carry out a survey of current pricing mechanisms around the world, not only for gas traded internationally, but also for gas produced and consumed within countries. IGU members were surveyed and provided the data and the survey responses were collated and analysed by Nexant. The 2009 World Gas Conference in Buenos Aires presented the results of the surveys for the years 2005 and 2007. Two further surveys for the years 2009 and 2010 were undertaken and presented at the 2012 World Gas Conference in Kuala Lumpur. Three surveys were undertaken and presented at the 2015 World Gas Conference in Paris, covering the years 2012, 2013 and 2014. The 2015 was the first in the triennium for the 2018 World Gas Conference in Washington DC, 2016 was the second and 2017 the third. The 2018, 2019 and 2020 surveys were meant to be the three leading up to the 2021 World Gas Conference in Daegu, South Korea, but this was postponed until 2022. In the 2021 survey responses were received for around 96 out of 113 countries, covering 98% of total world consumption. Data on the remaining countries, where responses were not received, was researched by the author of the report and/or based on past responses.

B.1 DATA COLLECTION

The focus of the gas pricing sub-group, and the surveys, was very much on wholesale prices, which can cover a wide range. In fully liberalised traded markets, such as the USA and the UK, the wholesale price would typically be a hub price (e.g. Henry Hub or the NBP). In many other countries, where gas is imported, it could typically be a border price. The more difficult cases are countries where all gas consumed is supplied from domestic production, with no international trade (either imports or exports) and the concept of a wholesale price is not recognised. In such cases the wholesale price could be approximated by wellhead prices or city-gate prices. Generally, the wholesale price is likely to be determined somewhere between the entry to the main high-pressure transmission system and the exit points to local distribution companies or very large end users.

The initial data collection was done on a country basis. The data were then collated to a regional level using the standard IGU regions shown in the figure below. Most of the regions are defined along the usual geographic lines, although the IGU includes Mexico in North America, and divides Asia into a region including the Indian sub-continent plus China, called Asia, and another region including the rest of Asia plus Australasia which is called Asia Pacific.

In terms of the allocation between different price formation mechanisms in any country, the general rule is that the wholesale price at the “point of first sale” in the country should be considered. For example, if gas enters a country under an oil-indexed contract and is then re-traded at a hub it is still considered to be in the oil price escalation (OPE) category.

Figure 67 IGU Regions
Data for each country were collected in a standard format. As an example, a data collection form for the UK is shown in the figure below. Individual country gas demand may be supplied from a combination of three sources - domestic production, pipeline imports and LNG imports (storage is ignored for the purpose of this analysis). The demand is allocated pro rata to domestic production and imports (price formation of gas exported is not collected, this is collected at the country of import). The volume figures on domestic production and imports allocated to the different price formation mechanisms in this report exclude the gas which is re-exported.

For each of these three sources data was collected separately on what percentage of the wholesale price for that category is determined by each mechanism. In some countries, one single mechanism was found to cover all transactions and that mechanism, therefore, was allocated 100%. In many cases, however, several mechanisms were found to be operating, in which cases estimates were made of the percentages for each price mechanism. The only constraint is that the total for each source of gas - domestic production, pipeline imports and LNG imports - must add up to 100%.

Information was also collected on wholesale price levels. This covered the annual average price and the highest monthly average price and lowest monthly average price. All prices were converted to $ per MMBTU. A comments section was included to identify and acknowledge the source of the information and any other useful information.

All data in the IGU study on gas volumes for consumption, production, imports and exports is taken from the IEA database, supplemented where necessary by any specific country and/or regional knowledge. It should be noted that 2021 volume data is still preliminary and may be adjusted once the final estimates are published later this year by the IEA. In addition, previous years may also be revised. These revisions may lead to small changes in the percentages for each price category when country data is aggregated at both the regional and world level.

Figure 68 Data Collection Form

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumes 2021:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline LNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline LNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline LNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wholesale Price Formation</td>
<td>Domestic Production</td>
<td>Imports</td>
</tr>
<tr>
<td>Oil Price Escalation</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Gas-on-Gas Competition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral Monopoly</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Netback from Final Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation: Cost of Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation: Social and Political</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation: Below Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Estimated 2021 Wholesale Price Range ($/MMBTU)</td>
<td>Average</td>
<td>High</td>
</tr>
<tr>
<td>$12.99</td>
<td>$33.08</td>
<td>$5.81</td>
</tr>
</tbody>
</table>
B.2 TYPES OF PRICE FORMATION MECHANISMS

In preparation for the initial 2005 survey, a series of discussions were held at the PGCB meetings on the definition of different types of price formation. It was decided to use for categorisation purposes the wholesale pricing mechanisms described in Box 2.

BOX 2: TYPES OF PRICE FORMATION MECHANISMS

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Price Escalation (OPE)</td>
<td>The price is linked, usually through a base price and an escalation clause, to competing fuels, typically crude oil, gas oil and/or fuel oil. In some cases, coal prices can be used as can electricity prices.</td>
</tr>
<tr>
<td>Gas-on-Gas Competition (GOG)</td>
<td>The price is determined by the interplay of supply and demand - gas-on-gas competition - and is traded over a variety of different periods (daily, monthly, annually or other periods). Trading takes place at physical hubs (e.g., Henry Hub) or notional hubs (e.g., NBP in the UK). There are likely to be developed futures markets (NYMEX or ICE). Not all gas is bought and sold on a short-term fixed price basis and there will be longer term contracts but these will use gas price indices to determine the monthly price, for example, rather than competing fuel indices. Also included in this category are spot LNG cargoes, any pricing which is linked to hub or spot prices and also bilateral agreements in markets where there are multiple buyers and sellers.</td>
</tr>
<tr>
<td>Bilateral Monopoly (BIM)</td>
<td>The price is determined by bilateral discussions and agreements between a large seller and a large buyer, with the price being fixed for a period of time - typically one year. There may be a written contract in place but often the arrangement is at the Government or state-owned company level. Usually there would be a single dominant buyer or seller on at least one side of the transaction, to distinguish this category from GOG, where there would be multiple buyers and sellers trading bilaterally.</td>
</tr>
<tr>
<td>Netback from Final Product (NET)</td>
<td>The price received by the gas supplier is a function of the price received by the buyer for the final product the buyer produces. This may occur where the gas is used as a feedstock in chemical plants, such as ammonia or methanol, and is the major variable cost in producing the product.</td>
</tr>
<tr>
<td>Regulation: Cost of Service (RCS)</td>
<td>The price is determined, or approved, formally by a regulatory authority, or possibly a Ministry, but the level is set to cover the “cost of service”, including the recovery of investment and a reasonable rate of return.</td>
</tr>
<tr>
<td>Regulation: Social and Political (RSP)</td>
<td>The price is set, on an irregular basis, probably by a Ministry, on a political/social basis, in response to the need to cover increasing costs, or possibly as a revenue raising exercise - a hybrid between RCS and RBC.</td>
</tr>
<tr>
<td>Regulation: Social and Political (RSP)</td>
<td>The price is set, on an irregular basis, probably by a Ministry, on a political/social basis, in response to the need to cover increasing costs, or possibly as a revenue raising exercise - a hybrid between RCS and RBC.</td>
</tr>
<tr>
<td>Regulation: Social and Political (RSP)</td>
<td>The price is knowingly set below the average cost of producing and transporting the gas often as a form of state subsidy to the population.</td>
</tr>
<tr>
<td>Regulation: Social and Political (RSP)</td>
<td>The gas produced is either provided free to the population and industry, possibly as a feedstock for chemical and fertilizer plants, or in refinery processes and enhanced oil recovery. The gas produced maybe associated with oil and/or liquids and treated as a by-product.</td>
</tr>
</tbody>
</table>

26 The Wholesale Gas Pricing Group began life as Sub Group 2 of PGCB and was chaired in the period leading up to the 2009 World Gas Conference by Runar Tjersland of Statoil and between 2009 and 2018 by Mike Fulwood, formerly of Nexant, but now a Senior Research Fellow at the Oxford Institute for Energy Studies and a Fellow at the Center on Global Energy Policy at Columbia University. It is now part of the IGU’s Strategy Committee and has been re-titled as the Gas Pricing Group. The 2018, 2019, 2020, and 2021 surveys were organised by Mike Fulwood, under the guidance of the IGU Strategy Committee.
B.3 ANALYSING THE RESULTS

In looking at the different price formation mechanisms, the results have generally been analysed from the perspective of the consuming country. Within each country gas consumption can come from one of three sources, ignoring withdrawals from (and injections into) storage – domestic production, imported by pipeline and imported by LNG. In many instances, as will be shown below, domestic production, which is not exported, is priced differently from gas available for export and also from imported gas whether by pipeline or LNG. Information was collected for these three categories separately for each country and, in addition, pipeline and LNG imports were aggregated to give total imports and adding total imports to domestic production gives total consumption. For each country, therefore, price formation could be considered in 5 different categories:

- Domestic production (consumed within the country, i.e. not exported)
- Pipeline imports
- LNG imports
- Total imports (pipeline plus LNG)
- Total consumption (domestic production plus total imports)

Each country was then considered to be part of one of the IGU regions, as described above, and the 5 categories reviewed for each region. Finally, the IGU regions were aggregated to give the results for the World as a whole.

As well as collecting information on price formation mechanisms by country, information was also collected on wholesale price levels in each country – an annual average price and a range of high and low prices within the year. Comparisons of wholesale price levels, however, need to be treated with caution. The wholesale price can cover different points in the gas chain – wellhead price, border price, hub price, city-gate price – so the comparison of price levels is not always a like for like comparison.