Gas Infrastructure and Technology Development of China Gas Industry
Contents

I Natural Gas Infrastructure Construction
1 Natural gas pipeline construction
2 Natural gas storage construction
3 LNG terminal construction
4 Liquefaction plant construction

II Technology Development of China Gas Industry
1 Gas supply security technology
2 City gas pipeline distribution technology
3 Gas application technology
4 New energy technology
I Natural Gas Infrastructure Construction

1 Overview of Gas Industry Development in China
 ➢ Consumption, production data
 ➢ Foreign dependence on natural gas

2 Natural Gas Pipeline Construction
 ➢ Gas resource, imported gas
 ➢ Transmission pipeline
 ➢ Distribution pipeline

3 Natural Gas Storage Construction
 ➢ Storage, volume, ratio

4 LNG Terminal Construction
 ➢ Numbers, quantity

5 Liquefaction Plant Construction
 ➢ Type, numbers
Overview of Gas Industry Development in China

Production: 107.2 billion m³
Consumption: 147.1 billion m³
New challenge for energy safety

Optimize
- natural gas consumption structure

Develop
- efficient domestic supply
- more unconventional gas resource
Natural Gas Pipeline Construction

Total length of transmission pipeline more than 40,000 Km

Total length of distribution pipeline
- 2010: 350,000 Km
- 2015: 600,000 Km

Urban gas coverage 94%
200 million homes access

Domestic gas resources (Off-shore in Nanhai)
- China
- Middle Asia, Russia, Burma

Natural gas pipeline construction
- Talimu: Shanxi, Gansu, Ningxia
- Chaidamu: Sichuan, Chongqing
- Nanhai: Sichuan to East Gas Transmission
- West to East Gas Transmission

Pipeline Examples
- West-East Pipeline
- Sichuan to Wuhan
Natural Gas Storage Construction

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Gas Volume</th>
<th>Gas Injection Capacity</th>
<th>Gas Production Capacity</th>
<th>Date of Establishment</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dazhangtuo</td>
<td>gas condensate reservoir</td>
<td>$6 \times 10^5 \text{m}^3$</td>
<td>$320 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$1000 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2000$^\circ$</td>
<td>Dagang oil field$^\circ$</td>
</tr>
<tr>
<td>Ban 876</td>
<td>gas condensate reservoir</td>
<td>$2.17 \times 10^3 \text{m}^3$</td>
<td>$100 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$300 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2001$^\circ$</td>
<td></td>
</tr>
<tr>
<td>Banzhongbei High Point</td>
<td>gas condensate reservoir</td>
<td>$10.97 \times 10^3 \text{m}^3$</td>
<td>$150 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$300 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2003$^\circ$</td>
<td></td>
</tr>
<tr>
<td>Banzhong North High Point Completion</td>
<td>gas condensate reservoir</td>
<td>$10.97 \times 10^3 \text{m}^3$</td>
<td>$150 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$600 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2004$^\circ$</td>
<td></td>
</tr>
<tr>
<td>Banzhong South High Point</td>
<td>gas condensate reservoir</td>
<td>$4.7 \times 10^3 \text{m}^3$</td>
<td>$225 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$600 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2005$^\circ$</td>
<td></td>
</tr>
<tr>
<td>Ban 808, 828</td>
<td>gas condensate reservoir, oil reservoir</td>
<td>$6.74 \times 10^3 \text{m}^3$</td>
<td>$360 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$600 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2006$^\circ$</td>
<td>Hubei oil field$^\circ$</td>
</tr>
<tr>
<td>Jing 58 Group</td>
<td>gas condensate reservoir, oil reservoir</td>
<td>$7.535 \times 10^3 \text{m}^3$</td>
<td>$400 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$700 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2010$^\circ$</td>
<td></td>
</tr>
<tr>
<td>Jintan (Phase 1)</td>
<td>salt cavern</td>
<td>$5.4 \times 10^3 \text{m}^3$</td>
<td>$640 \times 10^4 \text{m}^3/\text{d}$</td>
<td>$1500 \times 10^4 \text{m}^3/\text{d}$</td>
<td>2006$^\circ$</td>
<td>Jintan, Jiangsu$^\circ$</td>
</tr>
</tbody>
</table>

2010
8 gas storages
4.35 billion m3

2015
24 storages
increased capacity 22 billion m3
9.5% of consumption
LNG Terminal Construction

Quantity: 2011, imported LNG 12.2 million ton

Terminal: 16 are planned, 7 finished in 2012

Total designed capacity of Phase 1: >20 million t/y

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Share-holder</th>
<th>Status</th>
<th>Start-up Time</th>
<th>Capacity (I)</th>
<th>Capacity (II)</th>
<th>Capacity (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapeng</td>
<td>Shenzhen, Guandong</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2006</td>
<td>370</td>
<td>670</td>
<td>1040</td>
</tr>
<tr>
<td>Xiuyu</td>
<td>Putian, Fujian</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2008</td>
<td>260</td>
<td>500</td>
<td>760</td>
</tr>
<tr>
<td>Zhongximengang</td>
<td>Yangshan, Shandong</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2009</td>
<td>300</td>
<td>600</td>
<td>900</td>
</tr>
<tr>
<td>Yangkougang</td>
<td>Rudong, Jiangsu</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2011</td>
<td>350</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>Nianyugang</td>
<td>Dalian, Liaoning</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2011</td>
<td>300</td>
<td>600</td>
<td>900</td>
</tr>
<tr>
<td>Huangmaodao</td>
<td>Macao</td>
<td>CNOOC</td>
<td>Finished</td>
<td>2012</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Shatian</td>
<td>Dongguan, Guangdong</td>
<td>Jufeng</td>
<td>Finished</td>
<td>2012</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Beilunwan</td>
<td>Ningbo, Zhejiang</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2012</td>
<td>300</td>
<td>600</td>
<td>900</td>
</tr>
<tr>
<td>Gaolanwan</td>
<td>Zhuhai, Guangdong</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2013</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Huilai</td>
<td>Jieyang, Guangdong</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2015</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Yangpu</td>
<td>Haikou, Hainan</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2014</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Qinhuangdao</td>
<td>Qingshuangdao, Hebei</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2015</td>
<td>200</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Caofeidian</td>
<td>Tangshan, Hebei</td>
<td>CNOOC</td>
<td>Under Construction</td>
<td>2013</td>
<td>350</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>Beihai</td>
<td>Beihai, Guangxi</td>
<td>Sinopec</td>
<td>Under Construction</td>
<td>2014</td>
<td>300</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Dalian</td>
<td>Dalian, Liaoning</td>
<td>Sinopec</td>
<td>Under Construction</td>
<td>2015</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Dongjiakou</td>
<td>Qingdao, Shandong</td>
<td>Sinopec</td>
<td>Under Construction</td>
<td>2015</td>
<td>300</td>
<td>600</td>
<td>900</td>
</tr>
</tbody>
</table>

Total (10,000 ton)

- Capacity: 4680
- Capacity: 5370
- Capacity: 10050

Total (100 million m³)

- Capacity: 636
- Capacity: 730
- Capacity: 1366
LNG Liquefaction Plant Construction

Type
- peak-shaving station
- baseload station

Plants in 2012
- 48 completed, 5 under construction

Production capacity 2015
- 7.5 million ton/year
II Technology Development of China Gas Industry

1. **Gas supply security technology**
 - Diversifying transmission pipeline and gas resources
 - Improving emergency gas resource is a target for domestic gas operators

2. **City Gas Pipeline distribution technology**
 - Supply with multi-stage network, build with large diameter and high pressure
 - Peak and valley problem
 - Electronic information technology is applied for operation and dispatching.
 - Advanced leak detection technologies have been applied in China
 - Advanced anti-corrosion technology with IT approach
 - Trenchless technologies is widely applied.

3. **Gas application technology**
 - NGVs develop fast.
 - Gas distributed energy technology and its supporting policy have got some achievement.

4. **New energy technology**
 - China has got more high-level technologies.
 - The development of shale gas is still on the early stage.
Diversifying transmission pipeline and gas resources

Diversify transmission pipeline gas source

Gas storage facilities peak-shaving, emergency and strategy

Such as Shanghai, Shenzhen, Beijing

Natural gas resource structure of Beijing
Improving emergency gas resource

According to the plan

storage facilities construction scale for emergency 1.5 billion m³ (2015)
City Gas Pipeline Distribution Technology

Supply with multi-stage network, build pipeline with large diameter and high pressure

Gas Distribution Network Pressure
Shanghai: 60 bar
Beijing: 40 bar
Shenzhen: 40 bar

DN1016
City Gas Pipeline Distribution Technology

Peak and Valley Problem

- Storage tanks
- Linpack
- LNG or CNG

Daily peaking-shaving technology Means

Daily peak and valley problem - high level
Seasonal peak and valley problem - lack of efficient solution depends on upstream
Electronic information technology is applied for operation and dispatching.

- Production dispatching
 - network dispatching
- SCADA
 - equipment condition
 - Consumption
 - alarming
- Supervisory of Cathodic protection
 - electric potential
 - estimation result
- Operation
 - running coverage ratio
 - blind spots
 - leak inspection
 - equipment maintenance
- EAM
 - equipment list
 - maintenance plan
 - calibration
 - special equipment
 - technology improvement and overhaul
- Emergency Command
 - event source
 - event process
 - Vehicle position
 - emergency supplies
 - onsite video
 - commanding and dispatching
 - rescue result
- GIS
 - image database

Research
- early warning technology
- fault diagnosis technology

Real-time control
- improve the equipment and facilities reliability and safety
Advanced leak detection technologies have been applied in China.

City gas pipeline distribution technology
City Gas Pipeline Distribution Technology

Advanced anti-corrosion technology with IT approach

- Anti-corrosion Coating
- Cathodic Protection

Remote control technology

Avoid the potential corrosion

Corrosion is recorded and handled in time

a guarantee to the safety operation of gas pipeline
City Gas Pipeline Distribution Technology

Trenchless technology is widely applied

Avoid
- digging wide area on pipes
- traffic-jam
- destruction landscape

Apply
- the sites that can’t be dig

Trenchless Technology: Pipeline Construction and Repair

- directional drilling
- U-lining
- Pipe ramming
- inversion lining rehabilitation
- Slurry balance pipe-jacking
- Static Pipeline Bursting
Gas Application Technology

Gas application
CCHP, power generation, cooling, industry application, NGV etc.

Competitive energy Vs. coal and electricity
Key figure

> 1 million natural gas vehicles; ½ from road service party: taxi, bus, intercity traffic

Mastered key technology of NGV
	natural gas engine, and the refilling system, etc.
Gas distributed energy technology and its supporting policy have got some achievement.

Past
A lot of pilot projects after 2000

Now
equipment, already domestic supply experience in design and operation standard established gradually network access policy published in 2013

Future
policy, subsidy, and access rule

2020, installed capacity 50 million Kw
New Energy Technology

- Coalbed methane
- Fuel ethanol
- Geothermy
- Wind and solar

Problems solved
Projects established
Efficient back-up
New Energy Technology

China’s coalbed methane development.

- Estimated recoverable reserve: 10.87 trillion m³
- Wells: 5400
- Production capacity: 3.1 billion m³

- High-level technology
- Achievement in exploration, drilling purification, etc.
- Core technologies are applied
The development of shale gas is still on the early stage.

- Recoverable volume: 25 trillion m³ (except for Qinghai and Tibet)
- 2009-2012: 129 related wells
- Production in 2012: near 30 million m³

Technology gaps
- Technical and financial limits
- More vertical drilling than horizontal drilling
- Fracking and completion

Shale Gas Well Drilled by Petrol China: Wei 201
Thank you!

车立新 CHE Lixin
Phone：010-64256601
Mail:chelx@bjgas.com